Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Środek masy układu ciał

Ostatnio komentowane
Mit o Narcyzie można interpretować na wielu różnych poziomach. W najprostszym sensie s...
nikola • 2019-07-20 09:17:22
Bardzo fajne, proste wyprowadzenie wzoru.
Eto Demerzel • 2019-07-15 07:25:47
jest git
jakubas kok • 2019-07-08 10:19:33
przydałyby się jeszcze daty
j • 2019-06-27 15:49:28
wolę określenie niewierzący w boga i objawienia, lub racjonalnie myślący. jest taka p...
bergo • 2019-06-22 15:18:51
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Przykładem układu ciał nietworzących bryłę sztywną może być np. Pluton i jego księżyc – Charon. Środek masy tego układu znajduje się poza obszarem Plutona.

Aby wyznaczyć położenie środka masy korzystamy ze wzoru:

 \vec{r _{sm} } = \frac{m_{1} \vec{r_{2}}+m_{2} \vec{r_{n}}+...+m_{n} \vec{r_{n}} }{m_{1}+m_{2}+...+m_{n}}

gdzie

-  \vec{r _{sm} } - wektor położenia środka masy,

- m_{1},m_{2},m_{n} - masa kolejnych elementów układu,

-  \vec{r_{1}} , \vec{r_{2}} , \vec{r_{n}} - wektory przemieszczenia kolejnych elementów układu.

Jeżeli na układ ciał nie działają siły zewnętrzne, to pozostaje w spoczynku lub porusza się ruchem jednostajnym.

Polecamy również:

Komentarze (0)
2 + 1 =
echo $this->Html->script('core.min'); echo $this->Html->script('blockadblock.js'); echo $this->Html->script('fancybox/jquery.fancybox-1.3.4.min'); echo $this->Html->css('/js/fancybox/jquery.fancybox-1.3.4.min'); echo $this->Html->script('jnice/jquery.jNice', array('async' => 'async')); echo $this->Html->css('/js/jnice/jNice.min');