Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Środek masy układu ciał

Ostatnio komentowane
( ͡° ͜ʖ ͡°)( ͡° ͜ʖ ͡°)( ͡° ͜ʖ ͡°)( ͡° ͜ʖ ͡°)( ͡° ͜ʖ ͡°)( ͡...
( ͡° ͜ʖ ͡°)( ͡° ͜ʖ ͡°)( ͡° ͜ʖ ͡°)( ͡° ͜ʖ ͡°)( ͡° ͜ʖ ͡°)( ͡° ͜ʖ ͡°)( ͡° ͜ʖ ͡°)( ͡° ͜ʖ ͡°)( ͡° ͜ʖ ͡°)( ͡° ͜ʖ ͡°)( ͡° ͜ʖ ͡°)( ͡° ͜ʖ • 2019-05-24 08:40:31
z kąd brane
minerwa • 2019-05-23 17:15:59
Dzięki xd
Segawegaxd • 2019-05-22 19:12:55
Niezłe. Dzięki
Masza05x • 2019-05-22 18:56:41
jest git
siemaneczko • 2019-05-21 18:36:35
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Przykładem układu ciał nietworzących bryłę sztywną może być np. Pluton i jego księżyc – Charon. Środek masy tego układu znajduje się poza obszarem Plutona.

Aby wyznaczyć położenie środka masy korzystamy ze wzoru:

 \vec{r _{sm} } = \frac{m_{1} \vec{r_{2}}+m_{2} \vec{r_{n}}+...+m_{n} \vec{r_{n}} }{m_{1}+m_{2}+...+m_{n}}

gdzie

-  \vec{r _{sm} } - wektor położenia środka masy,

- m_{1},m_{2},m_{n} - masa kolejnych elementów układu,

-  \vec{r_{1}} , \vec{r_{2}} , \vec{r_{n}} - wektory przemieszczenia kolejnych elementów układu.

Jeżeli na układ ciał nie działają siły zewnętrzne, to pozostaje w spoczynku lub porusza się ruchem jednostajnym.

Polecamy również:

Komentarze (0)
4 + 3 =