Gęstość cieczy

W naczyniu o pojemności 9 dm3 znajduje się ciecz o masie 3 kg. Jak zmieni się gęstość tej cieczy, jeżeli masa wzrośnie 3-krotnie, a objętość zmaleje o połowę?

Szkoła Podstawowa Fizyka

Odpowiedź eSzkola.pl

Avatar
Justyna Ekspert eSzkola.pl
25.05.2020 09:50

Dane i szukane z zadnia:

V_1=9dm^3=9*10^{-3}m^3

V_2= \frac{1}{2} V_1= \frac{1}{2}*9*10^{-3}m^3=4,5* 10^{-3}m^3

m_1=3kg

m_2=3m_1=3*3kg=9kg

 \rho _1=?

 \rho _2=?

Korzystamy ze wzoru ogólnego na gęstość:

 \rho = \frac{m}{V}

W naszym przypadku wzór ten będzie miał postać:

 \rho_1 = \frac{m_1}{V_1}

podstawiamy dane z zadania:

 \rho _1= \frac{3kg}{9*10^{-3}m^3}

 \rho _1=333,33 \frac{kg}{m^3}

W drugim przypadku bedziemy mieli:

 \rho_2 = \frac{m_2}{V_2}

podstawiamy dane z zadania:

 \rho _2= \frac{9kg}{4,5*10^{-3}m^3}

 \rho _2=200 \frac{kg}{m3}

Odp. Gęstość w drugim przypadku będzie mniejsza i będzie wynosiła 200 kg/m3.

Dzięki! 1
Znasz odpowiedź na to pytanie?
Wynik działania 4 + 3 =
Wszystkie odpowiedzi (0)

Rozwiąż również: