Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Macierz trójkątna

Ostatnio komentowane
Tekst zapewne zredagowany przez historyka. Tak naprawdę nic na temat rewolucyjnych osiąg...
furiat • 2019-08-15 11:10:28
Szkoda że nie ma zdań a tak poza tym to fajna strona
Nie kumata862 • 2019-08-06 19:59:23
Sorry, ale to nie jest o tańcu śmierci, tylko o "Rozmowie..." w ogóle.
Andr • 2019-07-30 10:51:02
Mądre to
Zbyszek • 2019-07-27 08:44:21
Sekta według przeciwników stosowania tego terminu jest elementem pseudonauki, nie uznawa...
uczen Jezusa • 2019-07-30 10:16:33
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Macierzą trójkątną nazywamy macierz kwadratową, w której powyżej lub poniżej głównej przekątnej wszystkie elementy są zerami.

Macierz nazywamy trójkątną górną jeśli wszystkie jej elementy poniżej głównej przekątnej są zerami.

Macierz nazywamy trójkątną dolną jeśli wszystkie jej elementy powyżej głównej przekątnej są zerami.

 

A zatem macierz trójkątna górna ma następującą postać:

\mathbf{A} =
\left[ \begin{array}{ccc}
a_{11} & a_{12} & a_{13} \ldots \\
0 & a_{22} & a_{23} \ldots \\
0 & 0 & a_{33} \ldots \\
\vdots & \vdots & \ddots
\end{array} \right]

Z kolei macierz trójkątna dolna ma postać:

\mathbf{A} =
\left[ \begin{array}{ccc}
a_{11} & 0 & 0 \ldots \\
a_{21} & a_{22} & 0 \ldots \\
a_{31} & a_{32} & a_{33} \ldots \\
\vdots & \vdots & \ddots
\end{array} \right]

Macierze trójkątne mają tą własność, że do policzenia ich wyznacznika wystarczy policzyć tzw. ślad macierzy, tj. iloczyn elementów leżących na głównej przekątnej.

\det \mathbf{A} = a_{11} \cdot a_{22} \cdot ... \cdot a_{nn}, gdzie n - wymiar macierzy (liczba wierszy/kolumn).

Szczególnym przypadkiem macierzy zarówno trójkątnej górnej jak i trójkątnej dolnej jest macierz diagonalna, a co za tym idzie także i macierz jednostkowa.

Przykłady:

\mathbf{A} =
\left[ \begin{array}{ccc}
1 & 10 & 100 & 1000 \\
0 & 2 & 20 &200 \\
0 & 0 & 3 &30 \\
0 & 0 & 0 &4\end{array} \right] - macierz trójkątna górna czwartego stopnia.

\mathbf{B} =
\left[ \begin{array}{ccc}
1 & 0 & 0\\
2 & 2 & 0 \\
3 & 0 & 3 \\

\end{array} \right] - macierz trójkątna dolna trzeciego stopnia.

Polecamy również:

Komentarze (0)
3 + 4 =
echo $this->Html->script('core.min'); echo $this->Html->script('blockadblock.js'); echo $this->Html->script('fancybox/jquery.fancybox-1.3.4.min'); echo $this->Html->css('/js/fancybox/jquery.fancybox-1.3.4.min'); echo $this->Html->script('jnice/jquery.jNice', array('async' => 'async')); echo $this->Html->css('/js/jnice/jNice.min');