Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Pochodne funkcji – wzory, przykłady, zadania

Ostatnio komentowane
Pawle, dziękujemy za zwrócenie uwagi - tekst został już poprawiony.
ADMIN • 2020-02-21 08:23:54
Dziękujemy za zwrócenie uwagi, wpis został poprawiony.
ADMIN • 2020-02-21 08:31:24
Fajne ale lepiej jak by było w podpunktach ! Fajna Stronka KC !
Filut • 2020-02-20 19:33:52
Przydatne Dzięki temu zrobiłem zadanie z chemii oczywiście
KNDisso • 2020-02-19 18:50:16
fajne bardzo pomaga w zad. :)
LusiaYt • 2020-02-19 18:13:07
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Jak zmienia się funkcja (tzn. jej wartości) pod wpływem zmian jej argumentu?

Do określenia tego służy tzw. iloraz różnicowy, tj. stosunek zmiany wartości funkcji do zmiany jej argumentu (zmiany te bywają czasem nazywane przyrostami).

 

Def.: Jeśli f jest funkcją w przedziale (a,b), a x ix_0 należą do (a,b), to ilorazem różnicowym nazywamy wyrażenie \frac{f(x_0+h)-f(x_0)}h, gdzie h = x- x_0.

 

Mając tak określony iloraz różnicowy możemy zdefiniować pochodną funkcji w punkcie.

 

Def.: Pochodną funkcji f w punkcie x_0 nazywamy granicę ilorazu różnicowego przy h \to 0 (o ile ta granica istnieje), tzn.f'(x_0) =  \lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}h.

 

Jeśli funkcja posiada pochodną w każdym punkcie swojej dziedziny, to mówimy, że funkcja ta jest różniczkowalna. 

 

Przykład:

Obliczyć pochodną funkcji f(x) = x^2x_0 = 2.

Korzystamy z definicji pochodnej:

 \lim_{h \to 0} \frac{(2+h)^2-2^2}h =  \lim_{h \to 0} \frac{4+4h+h^2-4}h = 
 \lim_{h \to 0} \frac{h^2+4h}h =  \lim_{h \to 0} (h+4) = 4.

 

Zadanie:

Obliczyć pochodną funkcji f(x) = x^3x_0 = 5.

 

Odpowiedzi:

75.

Polecamy również:

Komentarze (0)
2 + 5 =