Pochodne funkcji – wzory, przykłady, zadania

Jak zmienia się funkcja (tzn. jej wartości) pod wpływem zmian jej argumentu?

Do określenia tego służy tzw. iloraz różnicowy, tj. stosunek zmiany wartości funkcji do zmiany jej argumentu (zmiany te bywają czasem nazywane przyrostami).

 

Def.: Jeśli f jest funkcją w przedziale (a,b), a x ix_0 należą do (a,b), to ilorazem różnicowym nazywamy wyrażenie \frac{f(x_0+h)-f(x_0)}h, gdzie h = x- x_0.

 

Mając tak określony iloraz różnicowy możemy zdefiniować pochodną funkcji w punkcie.

 

Def.: Pochodną funkcji f w punkcie x_0 nazywamy granicę ilorazu różnicowego przy h \to 0 (o ile ta granica istnieje), tzn.f'(x_0) =  \lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}h.

 

Jeśli funkcja posiada pochodną w każdym punkcie swojej dziedziny, to mówimy, że funkcja ta jest różniczkowalna. 

 

Przykład:

Obliczyć pochodną funkcji f(x) = x^2x_0 = 2.

Korzystamy z definicji pochodnej:

 \lim_{h \to 0} \frac{(2+h)^2-2^2}h =  \lim_{h \to 0} \frac{4+4h+h^2-4}h = 
 \lim_{h \to 0} \frac{h^2+4h}h =  \lim_{h \to 0} (h+4) = 4.

 

Zadanie:

Obliczyć pochodną funkcji f(x) = x^3x_0 = 5.

 

Odpowiedzi:

75.

Komentarze (0)
Wynik działania 3 + 2 =
Ostatnio komentowane
s
a • 2020-11-25 21:43:45
wd
dda • 2020-11-25 15:03:35
uhhuhuhuuhhu
kooaoa • 2020-11-25 12:03:59
dzięki :3
melinda • 2020-11-25 10:27:56
Jest błąd, powinno być 3s 3p 4s 3d jest 3s 4s 3d
Oldboy • 2020-11-24 21:27:13