Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Metody rozwiązywania układów równań

Ostatnio komentowane
Uwaga czytelniku! Tomek przyszedł na świat sto lat później.
Zaraza • 2018-08-18 11:27:47
"Jezu Chry..."! Dawno już nie czytałem tak czerwonego, komuszego, wypaczonego opracowani...
Otwórz oczy • 2018-08-15 18:21:31
Według mnie bardzo przydatne dzięki temu tekstowi mniej więcej zrozumiałam jak dział...
Emilia • 2018-07-26 20:05:25
@Hasher To zależy już od tłumacza przekładu(Pisma zostały napisane w kilku językach ...
Hgfhfg • 2018-07-09 11:34:37
ok
andrzej duda • 2018-06-14 10:31:18
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Istnieje wiele metod rozwiązywania układów równań liniowych.

Do najbardziej elementarnych należą trzy z nich:

(1) rozwiązywanie układu równań przez podstawienie,

(2) rozwiązywanie układu równań przez dodanie stronami,

(3) metoda wyznacznikowa (skorzystanie z tzw. wzorów Cramera).

 

Rozwiązywanie układu równań przez podstawienie polega na tym, że najpierw z jednego z równań wyprowadzamy jedną zmienną, a następnie podstawiamy ją do drugiego równania - tym samym sprowadzając je do postaci zwykłego równania liniowego z jedną zmienną. 

 

Przykład:

 \begin{cases} 4x + 3y = 0 \\ 2x -y = 5 \end{cases}

2x -y = 5  \Rightarrow y = 2x -5 - z drugiego równania wyprowadzamy zmienną y

4x + 3(2x-5)=0 - wstawiamy wyprowadzoną zmienną do pierwszego równania

4x + 6x = 15

10 x = 15

x =  \frac{3}{2} = 1,5 - wyliczyliśmy pierwszą zmienną

y = 2  \cdot  \frac{3}{2} -5 = 3-5 = -2 - korzystając z wyliczonej pierwszej zmiennej, oraz drugiego równania, znajdujemy drugą zmienną.

 

Rozwiązywanie układów przez dodawanie stronami polega na tym, by doprowadzić oba równania do postaci, w której parametry przy jednej ze zmiennych sumują się do zera. Wówczas dodając oba równania (tzn. lewe strony obu równań oraz prawe strony obu równań) otrzymujemy nawet równanie, już z jedną zmienną - z którego możemy wyliczyć wartość tej zmiennej, by następnie - po powrocie do któregoś z równań

Polecamy również:

Komentarze (0)
2 + 4 =