Suma sześcianów

Kolejnym wzorem skróconego mnożenia jest wzór na sumę sześcianów.

a^{3} + b^{3} = (a+b)(a^{2}-ab+b^{2})

Jego zastosowanie umożliwia przekształcanie pewnych wyrażeń do innych postaci, co jest pomocne zwłaszcza przy rozwiązywaniu równań wielomianowych.

 

Przykład:

x^{3} + 27 = x^{3}+ 3^{3} = (x+3)(x^{2}-3x+9)

x^{3} + 125 = x^{3}+ 5^{3} = (x+5)(x^{2}-5x+25) 

 

Wyprowadzenie wzoru:

(a+b)(a^{2}-ab+b^{2}) = a^3 - a^{2}b + ab^{2} + a^{2}b - ab^{2} + b^{3} = a^{3} + b^{3}

 

Zadania:

Korzystając ze wzoru na sumę sześcianów przekształcić:

a) x^{3} + 8,

b) x^{3} + 1,

c) x^3 + 64.

 

Odpowiedzi:

a) (x+2)(x^{2}-2x+4)

b) (x+1)(x^{2}-x+1),

c) (x + 4)(x^{2} - 4x + 16).

Polecamy również:

Komentarze (0)
Wynik działania 1 + 2 =
Ostatnio komentowane
Nie widzę sensu w nauce całej historii rolnictwa, jej początków.
Jakub • 2021-06-13 20:40:42
Haha
Karolinkoń • 2021-06-13 19:47:26
????
E¹² • 2021-06-12 10:48:48
uważam tekst za odpowiedni i wartościowy przyjemnie i prawidłowo powiedziany
grażyna • 2021-06-10 15:25:04
Super
Żukson • 2021-06-10 09:08:41