Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Różnica kwadratów

Jednym z ważniejszych wzorów skróconego mnożenia jest wzór na różnicę kwadratów.

a^{2} - b^{2} = (a-b)(a+b)

Ułatwia on wykonywanie pewnych obliczeń i przekształcanie wyrażeń.

 

Przykład:

9^{2}-7^{2} = (9-7)(9+7)=2\cdot16=32 - wynik został otrzymany bez podnoszenia liczb do kwadratu.

(x+5)(x-5) = x^{2}-25 - wyrażenie zostało doprowadzone do ostatecznej postaci bez wykonywania operacji na poszczególnych etapach mnożenia dwóch nawiasów.

 

Wyprowadzenie wzoru (poprzez wymnożenie nawiasów i redukcję wyrazów podobnych):

(a-b)(a+b) = a^{2} - ab + ab - b^{2} = a^{2} - b^{2} 

 

Zadania:

1. Obliczyć, korzystając z wzoru na różnicę kwadratów:

a) 8^{2}-7^{2}

b) 6^{2}-5^{2},

c) 28^{2}-27^{2},

d) 15^{2}-13^{2}.

2. Przekształcić, korzystając z wzoru:

a) (x-3)(x+3),

b) (x-12)(x+12),

c) (7+y)(7-y).

 

Odpowiedzi:

1.

a) 15,

b) 11,

c) 55,

d) 56.

2.

a) x^{2}-9,

b) x^{2}-144,

c) 49 - y^{2}.

Zobacz również

Losowe zadania

Komentarze (0)
Wynik działania 4 + 2 =
Ostatnio komentowane
Pomylono kąty
dsf • 2020-06-22 16:11:37
wow
Kasia • 2020-06-17 11:55:30
jezu ale trudne
iwo • 2020-06-16 18:19:06
dzieki
halinka • 2020-06-15 11:00:28
Rzym podbity przez barbarzyńców powoli całkowicie zamierał. Styl romański jest uprosz...
Badacz wlotów i upadków cywilizacji • 2020-06-11 21:16:11