Różnica sześcianów

Kolejny wzór skróconego mnożenia to wzór na różnicę sześcianów.

a^{3} - b^{3} = (a-b)(a^{2}+ab+b^{2})

Jego zastosowanie umożliwia przekształcanie pewnych wyrażeń do innych postaci, dzieki czemu łatwiej można rozwiązywać pewne równania wielomianowe.

 

Przykład:

x^{3} - 27 = x^{3}- 3^{3} = (x-3)(x^{2}+3x+9)

x^{3} - 125 = x^{3}- 5^{3} = (x-5)(x^{2}+5x+25)  

 

Wyprowadzenie wzoru:

(a-b)(a^{2}+ab+b^{2}) = a^3 + a^{2}b + ab^{2} - a^{2}b - ab^{2} - b^{3} = a^{3} - b^{3}

 

Zadania:

Korzystając ze wzoru na sumę sześcianów przekształcić:

a) x^{3} - 8,

b) x^{3} - 1,

c) x^3 - 64.

 

Odpowiedzi:

a) (x-2)(x^{2}+2x+4)

b) (x-1)(x^{2}+x+1),

c) (x - 4)(x^{2} +4x + 16).

Polecamy również:

Komentarze (0)
Wynik działania 3 + 5 =
Ostatnio komentowane
8
• 2023-05-31 11:24:57
młody wolaaaaaaaaaaa
• 2023-05-30 19:51:05
cguj
• 2023-05-30 19:16:31
fxhbn
• 2023-05-30 14:57:44
Nic
• 2023-05-30 14:48:17