Silnia – definicja, wzory, zadania

Silnią liczby n (oznn!) nazywamy iloczyn liczb od 1 do n, tzn.

n! = 1 \cdot 2 \cdot ... \cdot n.

Przyjmujemy, że 0! = 1.

 

Przykład:

1! = 1

3! = 1 \cdot 2  \cdot 3  = 6

8! = 1  \cdot 2  \cdot3 \cdot4 \cdot5 \cdot6 \cdot7 \cdot8=40320

 

Zauważmy, że (n+1)! = n! \cdot (n+1).

 

Przykład:

\frac{(n+2)!}{n!} = \frac{1\cdot2\cdot...\cdot n\cdot(n+1)\cdot(n+2)}
{1\cdot2\cdot...\cdot n} = (n+1)\cdot (n+2)

 

Zadanie:

1. Policzyć:

a) 7!,

b) 10!

2. Uprościć wyrażenie \frac{(n-3)!}{n!}.

 

Odpowiedzi:

1.

a) 5040,

b) 3628800.

2. \frac1{n(n-1)(n-2)}.

Polecamy również:

Komentarze (0)
Wynik działania 3 + 4 =
Ostatnio komentowane
ja chce biografie
• 2023-12-03 17:07:01
znacie matlandię biorę od niej kursy matematyczne
• 2023-12-03 16:32:58
słabeeeeeeeeeeeeeee
• 2023-12-03 16:01:35
Dzień dobry, może warto żebyście przeczytali choć raz utwór Borgesa, który Pańs...
• 2023-12-03 13:10:12
ie fainid i nalepiei
• 2023-12-02 12:13:26