Silnia – definicja, wzory, zadania

Silnią liczby n (oznn!) nazywamy iloczyn liczb od 1 do n, tzn.

n! = 1 \cdot 2 \cdot ... \cdot n.

Przyjmujemy, że 0! = 1.

 

Przykład:

1! = 1

3! = 1 \cdot 2  \cdot 3  = 6

8! = 1  \cdot 2  \cdot3 \cdot4 \cdot5 \cdot6 \cdot7 \cdot8=40320

 

Zauważmy, że (n+1)! = n! \cdot (n+1).

 

Przykład:

\frac{(n+2)!}{n!} = \frac{1\cdot2\cdot...\cdot n\cdot(n+1)\cdot(n+2)}
{1\cdot2\cdot...\cdot n} = (n+1)\cdot (n+2)

 

Zadanie:

1. Policzyć:

a) 7!,

b) 10!

2. Uprościć wyrażenie \frac{(n-3)!}{n!}.

 

Odpowiedzi:

1.

a) 5040,

b) 3628800.

2. \frac1{n(n-1)(n-2)}.

Polecamy również:

Komentarze (0)
Wynik działania 5 + 5 =
Ostatnio komentowane
Błąd w roku urodzenia. Jesienin urodził się w 1895 roku.
• 2024-04-14 15:08:13
lub9ie życię m0i dr0dz3
• 2024-04-14 11:30:33
Co za wstyd pomyśleć, że ja nie istnieje.
• 2024-04-12 15:30:23
supier
• 2024-04-11 18:27:13
bardzo pomocne
• 2024-04-09 17:22:24