Na podstawie wykresu określ okres półowicznego rozpadu i masę próbki radioizotopu
Zapoznaj się z poniższym wykresem zależności zmian masy w czasie dla pewnego radioizotopu.
Na podstawie wykresu określ, ile wynosi okres połowicznego rozpadu dla tego izotopu, a następnie oszacuj ile gramów izotopu pozostanie po 15 dniach.
Odpowiedź eSzkola.pl
Okres połowicznego rozpadu jest to czas, po którym rozpadowi ulega połowa jąder promieniotwórczego izotopu. Odczytujemy zatem z wykresu liczbę dni po której pozostała połowa wyjściowej masy próbki (czerwona linia przerywana). Okres połowicznego rozpadu radioizotopu wynosi w tym przypadku 5 dni.
Na podstawie wykresu można odczytać, że po 15 dniach pozostanie około 25 mg radioizotopu (granatowa linia przerywana).
Odpowiedź: Okres połowicznego rozpadu radioizotopu wynosi 5 dni, a masa próbki tego izotopu po 15 dniach wynosi 25 mg.
Rozwiąż również:
- Określ liczbę protonów oraz neutronów powstałych po rozpadzie promieniotwórczym radu
- Zidentyfikuj atomy biorące udział w przemianach promieniotwórczych
- Zbilansuj równanie otrzymywania izotopu wodoru
- Zapoznaj się z szeregiem naturalnych przemian jądrowych izotopu uranu i określ, jakiemu rozpadowi uległ każdy z izotopów
- Odczytaj z wykresu zawartość promienitwórczego izotopu wodoru w próbce wody po upływie 40 lat