Sześcian sumy

Kolejnym wzorem skróconego mnożenia jest wzór na sześcian sumy. 

(a + b) ^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}

Wzór ten jest szczególnie przydatny do szybkiego obliczania i wyrażania w uporządkowanej postaci wszystkich wyrażeń typu suma zmiennej (np. x) i liczby, do potęgi trzeciej.

 

Przykład:

(2 + x)^{3} = 2^{3} + 3  \cdot 2 ^{2} \cdot x + 3 \cdot 2 \cdot x^{2} + x^{3} = 8 + 12 x + 6x^{2} + x^{3} - zastosowanie wzoru na sumę sześcianów do jednoczesnego rozwinięcia i uporządkowania wyrażenia.

 

Wyprowadzenie wzoru:

(a+b)^{3} = (a+b)^{2}(a+b) = (a^{2} + 2ab + b^{2})(a+b) =

a^{3} + 2a^{2}b + ab^{2} +
a^{2}b + 2ab^{2} + b^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3} 

 

Zadania:

Rozwinąć i uporządkować następujące wyrażenia:

a) ( x + 1)^{3},

b) ( 3 + y)^{3},

c) (z + 5)^{3}.

 

Odpowiedzi:

a) x^{3} + 3x^{2} + 3x + 1,

b) 27 + 27 y + 9y^{2} + y^{3},

c) z^{3} + 15 z^{2} + 75 z + 125.

Polecamy również:

Komentarze (0)
Wynik działania 4 + 4 =
Ostatnio komentowane
wspaniałe, jestem fanką
KAsia • 2021-01-25 21:06:28
Koks streszczenie
Kid • 2021-01-25 19:32:57
Xd
Naddjdhhjw • 2021-01-25 17:09:26
w szkole sprawiedliwość powinna być
e-nauka • 2021-01-25 15:05:17
:(
???? • 2021-01-25 14:07:57