Permutacje – kombinatoryka, definicja, zadania

Def.: Permutacją n-elementowego zbioru nazywamy każdy n-wymiarowy ciąg utworzony ze wszystkich elementów tego zbioru.

 

Przykład:

Dla zbioru \left \{ 1,2,3 \right \} permutacjami są (1,2,3)(1,3,2)(2,1,3)(2,3,1)(3,1,2)(3,2,1).

 

Twierdzenie: Ilość wszystkich permutacji zbioru n-elementowego wynosi n!, tznP_n = n!.

 

Przykład:

Zbiór trzyelementowy ma 6 permutacji.

P_3 = 3! = 6

 

W praktyce liczenie permutacji sprowadza się do operowania regułą mnożenia oraz wyznaczania silni.

 

Zadania: 

W urnie jest pięć kul ponumerowanych liczbami od 1 do 5. Losujemy kolejno bez zwracania wszystkie kule i zapisujemy ich numery w kolejności losowania. Ile możemy otrzymać liczb pięciocyfrowych większych od dwudziestu tysięcy, ale mniejszych od czterdziestu tysięcy?

 

Odpowiedzi:

 2\cdot 4! = 48.

Komentarze (0)
Wynik działania 3 + 5 =
Ostatnio komentowane
SUPER DZIĘKI BARDZO
PO PROSTU KULFON • 2020-11-29 18:49:53
elo
maciek z kalisza • 2020-11-29 11:56:35
ta
ja • 2020-11-29 11:21:27
dzięki
twój stary • 2020-11-28 14:23:27
super
andrzej • 2020-11-28 13:21:14