Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Kombinacje – kombinatoryka, definicja, zadania

Ostatnio komentowane
Bardzo fajne, proste wyprowadzenie wzoru.
Eto Demerzel • 2019-07-15 07:25:47
jest git
jakubas kok • 2019-07-08 10:19:33
przydałyby się jeszcze daty
j • 2019-06-27 15:49:28
wolę określenie niewierzący w boga i objawienia, lub racjonalnie myślący. jest taka p...
bergo • 2019-06-22 15:18:51
Nie no ja sie zgadzam z państwem :s
Jakiś żul • 2019-06-22 06:43:06
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Def.: Kombinacją k-elementową zbioru n-elementowego nazywamy każdy k-elementowy podzbiór tego zbioru.

 

Przypomnijmy, że ilość elementów zbioru (moc zbioru) dotyczy jedynie różnych elementów tego zbioru, to znaczy zbiór \left \{ 1,1,1 \right \} traktujemy tak samo jak zbiór \left \{ 1 \right \}.

 

Twierdzenie: Ilość kombinacji k-elementowych zbioru n-elementowego równa jest {n \choose k}, tzn.

C_n^k = \frac{n!}{k!(n-k)!}

 

Przykład:

Dla zbioru \left \{ 1,2,3,4 \right \} przykładowymi trzyelementowymi kombinacjami są \left \{ 1,2,3 \right \}\left \{ 2,3,4 \right \} lub \left \{ 1,3,4 \right \}.

Ilość takich kombinacji jest równa \frac {4!}{3!(4-3)!}=\frac{4!}{3!\cdot1}=4.

Wypiszmy więc dla porządku ostatnią z nich: \left \{ 1,2,4 \right \}.

 

W praktyce liczenie kombinacji sprowadza się do operowania symbolem Newtona. Można także posłużyć się trójkątem Pascala i odczytać wynik z odpowiedniego wiersza.

 

Zadania:

Ile jest wszystkich kombinacji zbioru \left \{ 1,2,3,4,5,6 \right \}?

 

Odpowiedzi:

63

Polecamy również:

Komentarze (0)
1 + 3 =
echo $this->Html->script('core.min'); echo $this->Html->script('blockadblock.js'); echo $this->Html->script('fancybox/jquery.fancybox-1.3.4.min'); echo $this->Html->css('/js/fancybox/jquery.fancybox-1.3.4.min'); echo $this->Html->script('jnice/jquery.jNice', array('async' => 'async')); echo $this->Html->css('/js/jnice/jNice.min');