Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Wariacje z powtórzeniami – definicja, wzór, zadania

Ostatnio komentowane
Bardzo fajne, proste wyprowadzenie wzoru.
Eto Demerzel • 2019-07-15 07:25:47
jest git
jakubas kok • 2019-07-08 10:19:33
przydałyby się jeszcze daty
j • 2019-06-27 15:49:28
wolę określenie niewierzący w boga i objawienia, lub racjonalnie myślący. jest taka p...
bergo • 2019-06-22 15:18:51
Nie no ja sie zgadzam z państwem :s
Jakiś żul • 2019-06-22 06:43:06
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Def.: k-elementową wariacją z powtórzeniami zbioru n-elementowego nazywamy każdy k-wyrazowy ciąg utworzony z elementów tego zbioru.

 

Twierdzenie: Ilość k-elementowych wariacji z powtórzeniami zbioru n-elementowego wynosi n\cdot n\cdot ... \cdot n (k razy), tzn.

\overline{V_n^k} = n^k

 

Zauważmy, że powyższe fakty zbieżne są z tym co wynika z reguły mnożenia - jeśli mamy wybrać k elementów ze zbioru n-elementowego, przy czym elementy te mogą się powtarzać, to każdy z nich możemy wybrać na n sposobów, zatem mamy n^k możliwości.

 

Przykład:

Ciąg (1,2,1,2,1,2) jest sześcioelementową wariacją zbioru \left \{ 1,2 \right \}.

Liczba wszystkich sześcioelementowych wariacji tego zbioru jest równa 2^6 = 64.

 

Liczenie wariacji z powtórzeniami sprowadza się do podnoszenia do potęgi naturalnej.

 

Zadania:

Ile jest wszystkich siedmiocyfrowych numerów telefonicznych, w których nie występuje cyfra 0?

 

Odpowiedź:

9^7 = 4782969.

Polecamy również:

Komentarze (0)
3 + 1 =
echo $this->Html->script('core.min'); echo $this->Html->script('blockadblock.js'); echo $this->Html->script('fancybox/jquery.fancybox-1.3.4.min'); echo $this->Html->css('/js/fancybox/jquery.fancybox-1.3.4.min'); echo $this->Html->script('jnice/jquery.jNice', array('async' => 'async')); echo $this->Html->css('/js/jnice/jNice.min');