Wariacje z powtórzeniami – definicja, wzór, zadania

Def.: \(k\)-elementową wariacją z powtórzeniami zbioru \(n\)-elementowego nazywamy każdy \(k\)-wyrazowy ciąg utworzony z elementów tego zbioru.

 

Twierdzenie: Ilość \(k\)-elementowych wariacji z powtórzeniami zbioru \(n\)-elementowego wynosi \(n\cdot n\cdot ... \cdot n\) (\(k\) razy), tzn.

\(\overline{V_n^k} = n^k\)

 

Zauważmy, że powyższe fakty zbieżne są z tym co wynika z reguły mnożenia - jeśli mamy wybrać \(k\) elementów ze zbioru \(n\)-elementowego, przy czym elementy te mogą się powtarzać, to każdy z nich możemy wybrać na \(n\) sposobów, zatem mamy \(n^k\) możliwości.

 

Przykład:

Ciąg \((1,2,1,2,1,2)\) jest sześcioelementową wariacją zbioru \(\left \{ 1,2 \right \}\).

Liczba wszystkich sześcioelementowych wariacji tego zbioru jest równa \(2^6 = 64\).

 

Liczenie wariacji z powtórzeniami sprowadza się do podnoszenia do potęgi naturalnej.

 

Zadania:

Ile jest wszystkich siedmiocyfrowych numerów telefonicznych, w których nie występuje cyfra \(0\)?

 

Odpowiedź:

\(9^7 = 4782969\).

Polecamy również:

Komentarze (0)
Wynik działania 4 + 1 =
Ostatnio komentowane
Brakowało mi rozwinięcia „przyjaciele momo” w bohaterach, ale tak to super.
anonim • 2025-06-16 20:16:00
spoko dostałem 5
anonim • 2025-06-16 18:47:01
slabe nic prawie nie ma
anonim • 2025-06-12 19:20:21
fajnie streszcnone bardzo pomocne
anonim • 2025-06-11 15:52:32
fajny
anonim • 2025-06-09 17:45:57