Wariacje z powtórzeniami – definicja, wzór, zadania

Def.: k-elementową wariacją z powtórzeniami zbioru n-elementowego nazywamy każdy k-wyrazowy ciąg utworzony z elementów tego zbioru.

 

Twierdzenie: Ilość k-elementowych wariacji z powtórzeniami zbioru n-elementowego wynosi n\cdot n\cdot ... \cdot n (k razy), tzn.

\overline{V_n^k} = n^k

 

Zauważmy, że powyższe fakty zbieżne są z tym co wynika z reguły mnożenia - jeśli mamy wybrać k elementów ze zbioru n-elementowego, przy czym elementy te mogą się powtarzać, to każdy z nich możemy wybrać na n sposobów, zatem mamy n^k możliwości.

 

Przykład:

Ciąg (1,2,1,2,1,2) jest sześcioelementową wariacją zbioru \left \{ 1,2 \right \}.

Liczba wszystkich sześcioelementowych wariacji tego zbioru jest równa 2^6 = 64.

 

Liczenie wariacji z powtórzeniami sprowadza się do podnoszenia do potęgi naturalnej.

 

Zadania:

Ile jest wszystkich siedmiocyfrowych numerów telefonicznych, w których nie występuje cyfra 0?

 

Odpowiedź:

9^7 = 4782969.

Komentarze (0)
Wynik działania 5 + 3 =
Ostatnio komentowane
SUPER DZIĘKI BARDZO
PO PROSTU KULFON • 2020-11-29 18:49:53
elo
maciek z kalisza • 2020-11-29 11:56:35
ta
ja • 2020-11-29 11:21:27
dzięki
twój stary • 2020-11-28 14:23:27
super
andrzej • 2020-11-28 13:21:14