Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Prawa de Morgana

Ostatnio komentowane
essa
knopers • 2020-01-20 18:18:59
wy janusze spod biedronki hahahaha
ema • 2020-01-20 15:59:52
ELUWINA
KISIELEK • 2020-01-20 14:56:57
Fajne takie
Jarek • 2020-01-20 13:56:14
masno ni
Papryk • 2020-01-20 07:15:50
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Dwa szczególnie istotne prawa rachunku zdań to prawa de Morgana.

Umożliwiają one przekształcanie koniunkcji na alternatywę oraz alternatywy na koniunkcję.

 

I prawo de Morgana

 \neg (p \wedge q)  \Leftrightarrow ( \neg p \vee  \neg q) - prawo zaprzeczenia koniunkcji.

Prawo to mówi o tym, że negacja koniunkcji jest równoważna alternatywie negacji.

 

Tabelka wartości logicznych dla I prawa de Morgana

 

 

II prawo de Morgana

 \neg (p  \vee  q)  \Leftrightarrow ( \neg p  \wedge   \neg q) - prawo zaprzeczenia alternatywy.

Prawo mówi o tym, że negacja alternatywy jest równoważna koniunkcji negacji.

 

Prawa można też, równoważnie, zapisać w języku rachunku kwantyfikatorów, i wówczas mają one następującą postać:\neg (\forall_{x}  \phi (x))  \Leftrightarrow  ( \exists_{x}  \neg  \phi (x))

\neg (\exists_{x}   \phi (x))  \Leftrightarrow  ( \forall_{x} \neg  \phi (x))

 

 

Zadanie:

Sprawdzić (za pomocą tabelki) prawdziwość drugiego prawa de Morgana).

Polecamy również:

Komentarze (0)
2 + 2 =