Nierówności z wartością bezwzględną

Rozwiązywanie nierówności z wartością bezwzględną sprowadza się do rozwiązania równania z wartością bezwzględną, odpowiedniej modyfikacji znaku nierówności oraz przeniesienia pewnych informacji na oś liczbową.

 

Dla nierówności postaci |x+a| <b mamy dwa następujące przypadki, połączone symbolem  \wedge :

x + a <b i x + a > - b.

Dla nierówności postaci |x+a| >b spójnikiem jest znak  \vee , zaś przypadki wyglądają następująco:

x + a >b lub x + a < - b.

Aby zapamiętać te modyfikacje, można skojarzyć obrót znaku nierówności z kierunkiem ruchu wskazówek zegara.

 

 

Przykład:

|x-3|>2 

x - 3 >2  \vee x-3 < -2 - zdejmując znak nierówności nierówność rozpisaliśmy na dwa przypadki, przy czym w drugim przypadku zmieniliśmy znak liczby po prawiej stronie nierówności.

Po przekształceniu oba przypadku mają postać:

x > 5  \vee x < 1, po naniesieniu na oś liczbową:

Zatem rozwiązaniem nierówności jest suma przedziałów:

x \in (- \infty ,1) \cup (5, \infty) 

 

Zadanie:

Rozwiązać następujące nierówności:

a) |x + 5| <4,

b) |x - 6|  \ge 2.

 

Odpowiedzi:

a) x \in (- \infty ,4]  \cup [8,  \infty ),

b) x \in (-9,-1)

Polecamy również:

Komentarze (0)
Wynik działania 4 + 5 =
Ostatnio komentowane
bazinga
• 2024-09-12 14:55:28
Dodajmy, że było to również ostatnie powstanie wendyjskie (słowiańskie) na terenie N...
• 2024-09-04 21:32:33
DZIĘKUJĘ
• 2024-07-31 13:21:34
I cóż miał rację Marek Aureliusz który chciał podbić Germanię uderzeniem przez Mor...
• 2024-07-06 19:45:33
O tym, że zmienne w czasie pole elektryczne jest źródłem pola magnetycznego, napisał ...
• 2024-06-27 07:25:33