Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Nierówności wymierne

Aby rozwiązać nierówność wymierną musimy najpierw tak ją przekształcić, by wszystkie występujące w niej ułamki algebraiczne znalazły się po jednej stronie. Następnie sprowadzamy je do wspólnego mianownika. Ta część rozwiązywania jest podobna do rozwiązywania równania wymiernego - w istocie postępujemy dotąd tak samo, z tą różnicą, że zamiast znaku = piszemy znak odpowiedniej nierówności.

Kiedy wyrażenie jest sprowadzone do jednego ułamka następuje tak zwana zamiana na nierówność równoważną co zostanie omówione poniżej. Następnie rozwiązuje się już nierówność wielomianową/kwadratową/liniową, rysując w tym celu uproszczony wykres wielomianu lub postępując w inny właściwy dla typu nierówności sposób.

Ostatecznie rozwiązaniem jest zbiór liczb spełniających otrzymaną nierówność wielomianową/kwadratową/liniową z wyłączeniem tych liczb, które zerowały mianowniki ułamków występujących na początku (a zatem konieczne jest wyznaczenie dziedziny pojawiających się wyrażeń - najlepiej jest to zrobić na starcie).

Prześledźmy to na przykładzie.

Przykład:

Rozwiążemy następującą nierówność:

 \frac{x}{x-1} + \frac{2x-7}{x ^{2} -1}  \ge  \frac{5}{x+1}

Wyznaczmy na początek dziedzinę. Dziedziną będą wszystkie liczby rzeczywiste oprócz tych zerujących mianowniki,

Zobacz również

Losowe zadania

Komentarze (0)
Wynik działania 2 + 5 =
Ostatnio komentowane
r
r • 2020-03-28 11:19:26
Hm, kopia z brainly.pl/zadanie/12222252 :)
Bsart • 2020-03-28 10:27:40
No nie wiem xXDD
Twoja stara • 2020-03-27 19:39:38
super! Bardzo mi się przydało
wasabi • 2020-03-27 19:38:30
xd
xd • 2020-03-27 19:07:17