Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Nierówności wymierne

Ostatnio komentowane
Mamy jedną, czy wiele pór roku? Zdanie "wylewy, siewy oraz zbiory odpowiadały współcz...
Gość • 2019-09-15 16:17:10
spoczko bardzo
Marco Polo • 2019-09-15 16:04:28
super
ilka • 2019-09-14 18:20:40
refsd
sd • 2019-09-14 10:11:39
Oskarżony o herezję i... ( brak odwagi u autora?)
hus • 2019-09-13 21:58:10
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Aby rozwiązać nierówność wymierną musimy najpierw tak ją przekształcić, by wszystkie występujące w niej ułamki algebraiczne znalazły się po jednej stronie. Następnie sprowadzamy je do wspólnego mianownika. Ta część rozwiązywania jest podobna do rozwiązywania równania wymiernego - w istocie postępujemy dotąd tak samo, z tą różnicą, że zamiast znaku = piszemy znak odpowiedniej nierówności.

Kiedy wyrażenie jest sprowadzone do jednego ułamka następuje tak zwana zamiana na nierówność równoważną co zostanie omówione poniżej. Następnie rozwiązuje się już nierówność wielomianową/kwadratową/liniową, rysując w tym celu uproszczony wykres wielomianu lub postępując w inny właściwy dla typu nierówności sposób.

Ostatecznie rozwiązaniem jest zbiór liczb spełniających otrzymaną nierówność wielomianową/kwadratową/liniową z wyłączeniem tych liczb, które zerowały mianowniki ułamków występujących na początku (a zatem konieczne jest wyznaczenie dziedziny pojawiających się wyrażeń - najlepiej jest to zrobić na starcie).

Prześledźmy to na przykładzie.

Przykład:

Rozwiążemy następującą nierówność:

 \frac{x}{x-1} + \frac{2x-7}{x ^{2} -1}  \ge  \frac{5}{x+1}

Wyznaczmy na początek dziedzinę. Dziedziną będą wszystkie liczby rzeczywiste oprócz tych zerujących mianowniki,

Polecamy również:

Komentarze (0)
3 + 1 =