Wzór Eulera

Z postacią wykładniczą liczb zespolonych związany jest pewien wzór, uznawany często za najpiękniejszy wzór matematyki.

Jego odkrycie zawdzięczamy Eulerowi.

Jak wiemy postacią wykładniczą liczby \(|z|(\cos \alpha +i\sin \alpha )\) jest \(|z|e ^{i \alpha } \), skąd wprost wynika, że

\(e ^{i \alpha } =\cos \alpha +i\sin \alpha \).

Podstawiając za \( \alpha \) kąt półpełny, a zatem w mierze radianowej \( \pi \), otrzymamy

\(e ^{i \pi } =\cos \pi +i\sin \pi \), co po wstawieniu za sinusa i cosinusa ich wartości w \( \pi \) oraz przeniesieniu wszystkiego na lewą stronę da nam właśnie

 

Wzór Eulera

\(e ^{i \pi } +1=0\).

 

Nazywany najpiękniejszym wzorem matematyki.

Wzór ten łączy pięć podstawowych stałych matematycznych:

\(e\) - liczbę Eulera/Napiera będącą podstawą logarytmu naturalnego,

\( \pi \) - liczbę Pi będącą stosunkiem długości okręgu do jego średnicy,

\(i\) - jednostkę urojoną liczb zespolonych,

\(0\) - zero będące elementem neutralnym dodawania,

\(1\) - jedynkę będącą elementem neutralnym mnożenia,

A ponadto występują w nim trzy podstawowe działania (dodawanie, mnożenie i potęgowanie) oraz znak równości.

 

Powyższe powody sprawiają, że matematycy zachwycają się niekwestionowaną prostotą oraz pięknem tego wzoru.

Polecamy również:

Komentarze (0)
Wynik działania 2 + 2 =
Ostatnio komentowane
Brakowało mi rozwinięcia „przyjaciele momo” w bohaterach, ale tak to super.
anonim • 2025-06-16 20:16:00
spoko dostałem 5
anonim • 2025-06-16 18:47:01
slabe nic prawie nie ma
anonim • 2025-06-12 19:20:21
fajnie streszcnone bardzo pomocne
anonim • 2025-06-11 15:52:32
fajny
anonim • 2025-06-09 17:45:57