Przystawanie

Przystawanie trójkątów jest matematycznym uściśleniem tego, że dwa trójkąty są „takie same”.

 

 

To, czy dwa trójkąty są przystające, weryfikujemy na podstawie cech przystawania trójkątów.

 

Cechy przystawania

(1) bok-bok-bok

Powiemy, że dwa trójkąty są przystające, jeśli wszystkie odpowiadające sobie boki będą miały taką samą długość.

|AB| = |DE|, |AC| = |DF|, |BC| = |EF|

(2) bok-kąt-bok

Powiemy, że dwa trójkąty są przystające, jeśli mają dwa odpowiadające sobie boki są równe, a kąt między nimi jest tym samym kątem w obu trójkątach.

Np. |AB| = |DE||AC| = |DF| oraz |\angle BAC| = |\angle EDF|

(3) kąt-bok-kąt

Powiemy, że dwa trójkąty są przystające, jeśli jeden bok odpowiadający sobie w obu trójkątach ma równą długość, oraz kąty przy tym boku są takie same.

Np. |AB| = |DE|, |\angle ABC| = |\angle DEF|, |\angle BAC| = |\angle EDF|

Polecamy również:

Komentarze (0)
Wynik działania 5 + 3 =
Ostatnio komentowane
OOOO Pan Pan Paweł!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!...
• 2023-12-07 14:50:52
Słabo nie umiecie liczyć
• 2023-12-07 13:59:39
69
• 2023-12-05 21:17:13
supeer tekst
• 2023-12-05 19:33:01
e
• 2023-12-05 15:48:06