Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Iloczyn skalarny wektorów – definicja, własności, wzór, zadania

Ostatnio komentowane
Naprawdę swietne wytłumaczenie o co chodzi z energia kinetyczna wzgledem ukladu odniesie...
Tom02 • 2018-08-18 20:49:41
@ Zaraza, dziękuję za czujność i zwrócenie uwagi. Już jest poprawna data urodzin.
ADMIN • 2018-08-20 13:14:31
"Jezu Chry..."! Dawno już nie czytałem tak czerwonego, komuszego, wypaczonego opracowani...
Otwórz oczy • 2018-08-15 18:21:31
Według mnie bardzo przydatne dzięki temu tekstowi mniej więcej zrozumiałam jak dział...
Emilia • 2018-07-26 20:05:25
@Hasher To zależy już od tłumacza przekładu(Pisma zostały napisane w kilku językach ...
Hgfhfg • 2018-07-09 11:34:37
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Iloczyn skalarny jest działaniem zdefiniowanym dla dwóch wektorów, którego wynikiem jest liczba.

Jeśli dane są dwa wektory v = (x_v,y_v)u = (x_u,y_u) ich iloczynem skalarnym nazywamy liczbę v \cdot u = x_v \cdot x_u + y_v \cdot y_u.

Innymi słowy zatem iloczyn skalarny dwóch wektorów jest sumą iloczynów ich współrzędnych.

 

Przykład:

(1,2)\cdot(3,4) = 1\cdot 3 + 2\cdot4=3+8 = 11

 

Obserwacja: Zauważmy, że długość wektora jest w gruncie rzeczy pierwiastkiem kwadratowym z iloczynku skalarnego tego wektora z nim samym

|| x || =  \sqrt{x\cdot x}

 

Zadanie:

Znaleźć następujące iloczyny skalarne:

a) (5,6)\cdot(3,7),

b) (2,-1)\cdot(3,-2),

c) (8, \frac 2 3)\cdot(-1, 9).

 

Odpowiedzi:

a) 57,

b) 8,

c) -2.

Polecamy również:

Komentarze (0)
1 + 2 =