Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Iloczyn skalarny wektorów – definicja, własności, wzór, zadania

Ostatnio komentowane
Tekst zapewne zredagowany przez historyka. Tak naprawdę nic na temat rewolucyjnych osiąg...
furiat • 2019-08-15 11:10:28
Szkoda że nie ma zdań a tak poza tym to fajna strona
Nie kumata862 • 2019-08-06 19:59:23
Sorry, ale to nie jest o tańcu śmierci, tylko o "Rozmowie..." w ogóle.
Andr • 2019-07-30 10:51:02
Mądre to
Zbyszek • 2019-07-27 08:44:21
Sekta według przeciwników stosowania tego terminu jest elementem pseudonauki, nie uznawa...
uczen Jezusa • 2019-07-30 10:16:33
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Iloczyn skalarny jest działaniem zdefiniowanym dla dwóch wektorów, którego wynikiem jest liczba.

Jeśli dane są dwa wektory v = (x_v,y_v)u = (x_u,y_u) ich iloczynem skalarnym nazywamy liczbę v \cdot u = x_v \cdot x_u + y_v \cdot y_u.

Innymi słowy zatem iloczyn skalarny dwóch wektorów jest sumą iloczynów ich współrzędnych.

 

Przykład:

(1,2)\cdot(3,4) = 1\cdot 3 + 2\cdot4=3+8 = 11

 

Obserwacja: Zauważmy, że długość wektora jest w gruncie rzeczy pierwiastkiem kwadratowym z iloczynku skalarnego tego wektora z nim samym

|| x || =  \sqrt{x\cdot x}

 

Zadanie:

Znaleźć następujące iloczyny skalarne:

a) (5,6)\cdot(3,7),

b) (2,-1)\cdot(3,-2),

c) (8, \frac 2 3)\cdot(-1, 9).

 

Odpowiedzi:

a) 57,

b) 8,

c) -2.

Polecamy również:

Komentarze (0)
2 + 3 =
echo $this->Html->script('core.min'); echo $this->Html->script('blockadblock.js'); echo $this->Html->script('fancybox/jquery.fancybox-1.3.4.min'); echo $this->Html->css('/js/fancybox/jquery.fancybox-1.3.4.min'); echo $this->Html->script('jnice/jquery.jNice', array('async' => 'async')); echo $this->Html->css('/js/jnice/jNice.min');