Przemiana izotermiczna gazu doskonałego jest przemianą, w której nie zmienia się temperatura gazu (T = const.), więc nie może się również zmieniać jego energia wewnętrzna (ΔU = 0). Pierwsza zasada termodynamiki ma więc w tym przypadku postać:
gdzie: W – praca, Q – ciepło.
Oznacza to, że wykonywana nad gazem praca podczas jego sprężania powoduje oddawanie przez gaz ciepła do otoczenia. W przypadku odwrotnym, gdy to gaz rozprężając się wykonuje pracę, musi to robić kosztem ciepła pobieranego od otoczenia.
Gdy gaz jest zamknięty w szczelnym zbiorniku, jego liczba moli nie może się zmieniać. Zatem prawa strona równania stanu gazu jest wielkością stałą:
gdzie: p – ciśnienie, V – objętość, n – liczba moli, R – stała gazowa, T – temperatura.
Jak wynika z przedstawionych zależności w przemianie izotermicznej iloczyn ciśnienia i objętość jest stały lub inaczej ciśnienie jest odwrotnie proporcjonalne do objętości – jest to prawo Boyle`a – Mariotte`a.
W przemianie izotermicznej wzrost objętości gazu powoduje zwiększenie się drogi, jaką mają do pokonania cząsteczki gazu pomiędzy ściankami zbiornika. Ponieważ ich średnia prędkość jest stała (gdyż T = const.), to czas potrzebny na pokonanie dłuższego odcinka drogi musi się zwiększyć. W rezultacie częstotliwości uderzeń cząsteczek o ścianki się zmniejsza, powodując tym samym zmniejszenie wartości ciśnienia.
Na wykresach przedstawiono zależności p(V), p(T) i V(T) dla przemiany izotemicznej. Kierunek przemiany oznaczono strzałką. Pole powierzchni figury ograniczonej wykresem p(V) i osią V jest pracą, jaką wykonał gaz podczas rozprężania.
Przemiana izotermiczna – przykład.
Gaz o objętości początkowej 1 m3 sprężono izotermicznie do objętości 0,5 m3. Ciśnienie wzrosło przy tym o 1000Pa. Ile wynosiło początkowe i końcowe ciśnienie gazu?
Dane: Szukane:
V1 = 1m3 p1 = ?
V2 = 0,5m3 p2 = ?
Δp = 1000Pa
T = const.
Rozwiązanie: