Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Druga zasada termodynamiki

Ostatnio komentowane
"Jezu Chry..."! Dawno już nie czytałem tak czerwonego, komuszego, wypaczonego opracowani...
Otwórz oczy • 2018-08-15 18:21:31
Według mnie bardzo przydatne dzięki temu tekstowi mniej więcej zrozumiałam jak dział...
Emilia • 2018-07-26 20:05:25
@Hasher To zależy już od tłumacza przekładu(Pisma zostały napisane w kilku językach ...
Hgfhfg • 2018-07-09 11:34:37
ok
andrzej duda • 2018-06-14 10:31:18
Super na spr.
Evogy • 2018-06-07 17:45:08
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Drugą zasadę termodynamiki można sformułować na wiele różnych sposobów. Jednak najogólniejszą jej postacią jest definicja wykorzystująca pojęcie entropii (S). W tym ujęciu druga zasada termodynamiki głosi, że możliwe są tylko takie procesy termodynamiczne, w których zmiana entropii jest większa, bądź równa zero:

 \Delta S \ge 0

Entropia nie zmienia się tylko w procesach odwracalnych, natomiast w procesach nieodwracalnych zawsze wzrasta. Niemożliwe więc są procesy, w których wartość entropii maleje.

Entropia jest pewną matematyczną funkcją stanu układu termodynamicznego, której wartości nie można w żaden sposób obliczyć. Możliwe jest jedynie obliczenie zmiany tej wielkości, która z definicji jest równa ilorazowi ciepła (Q), które układ wymienia z otoczeniem, do temperatury (T), w której ten proces się odbywa:

 \Delta S= \frac{Q}{T}  

Jednostką entropii jest dżul na kelwin (1J/K).

Z przytoczonej definicji drugiej zasady termodynamiki wynika szereg wniosków, które mogą i są często traktowane jako inne wersje tej zasady.

Poniżej przedstawiono dwie z nich:
1. Niemożliwy jest proces samorzutnego (tj. bez wykonywania pracy) przepływu energii w formie ciepła, który zachodzi w kierunku od ciała o niższej temperaturze do ciała o temperaturze wyższej.
2.  Układ nie może zamienić całego pobranego ciepła na pracę mechaniczną, czyli niemożliwa jest budowa perpetum mobile drugiego rodzaju.

Polecamy również:

  • Model gazu doskonałego

    Model gazu doskonałego stanowi podstawę teorii kinetyczno-molekularnej gazów. Został on stworzony w celu łatwiejszego opisywania zjawisk zachodzących w gazach. Więcej »

  • Przemiany stanu gazu

    Równanie stanu gazu, zwane równaniem Clapeyrona (pV = nRT), łączy ze sobą trzy zmienne parametry termodynamiczne tj.: ciśnienie – p, objętość – V oraz temperaturę – T. Więcej »

  • Cykle przemian termodynamicznych

    Cykle przemian termodynamicznych są procesami odwracalnymi, w których układ w wyniku szeregu przemian termodynamicznych powraca  do stanu początkowego, opisanego przez takie wielkości jak: ciśnienie, objętość i temperatura. Więcej »

  • Sprawność silników cieplnych

    Sprawność silników cieplnych (η) jest zdefiniowana jako stosunek pracy (W), wykonanej przez silnik podczas jednego cyklu, do wartości energii pobranej w formie ciepła (Q1) podczas tego cyklu: Więcej »

Komentarze (0)
3 + 2 =