Równanie ogólne prostej – wzór, zadania

Równaniem ogólnym prostej nazywamy równanie Ax+By+C=0, gdzie ABC są parametrami (współczynnikami liniowymi), przy czym AB nie mogą być jednocześnie równe zero.

Wektor o współrzędnych (A,B) jest wektorem prostopadłym do prostej, natomiast wektor (-B,A) jest wektorem do niej równoległym i nazywamy go wektorem kierunkowym prostej.

 

Przykład:

Przekształcić równanie ogólne na równanie kierunkowe:

2x + 3y - 2 = 0

Po przeniesieniu odpowiednich wyrażeń na drugą stronę równania oraz podzieleniu obu jego stron przez parametr stojący przy zmiennej y otrzymujemy

y = -\frac23+\frac23

 

Zauważmy, że prawa strona równania ogólnego prostej jest równa zero, stąd dla jednej prostej istnieje wiele równoważnych równań ją opisujących.

 

Przykład:

y - \frac12x+4=0,

2y - x+8=0,

3y-\frac32x+12=0, itd.

 

Przykład:

Napisać równanie prostej prostopadłej do wektora (7,2) i przechodzącej przez punkt P(1,2).

Wstawiamy współrzędne wektora do równania ogólnego prostej otrzymując 7x+2y+C=0. Podstawmy teraz za xy współrzędne punktu P:

7 + 4 + C =0

Stąd wyliczamy, że C = -11, ostatecznie więc 7x + 2y - 11 = 0 lub po przekształceniu do postaci kierunkowej y=-\frac72x+\frac{11}2.

 

Zadanie:

Jaka prosta prostopadła do wektora v = (3,-1) przechodzi przez punkt P(1,1)
?

 

Odpowiedzi:

Prosta 3x-y-2=0 (lub y=3x-2).

Polecamy również:

Komentarze (0)
Wynik działania 1 + 1 =
Ostatnio komentowane
OOOO Pan Pan Paweł!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!...
• 2023-12-07 14:50:52
Słabo nie umiecie liczyć
• 2023-12-07 13:59:39
69
• 2023-12-05 21:17:13
supeer tekst
• 2023-12-05 19:33:01
e
• 2023-12-05 15:48:06