Proste równoległe – definicja, zadania

Dwie proste są równoległe jeśli mają taki sam współczynnik kierunkowy, tzn. dla prostych

\(l_1:y=a_1x+b_1\)

\(l_2:y=a_2x+b_2\)

porównujemy parametry \(a\) i jeśli \(a_1 = a_2\) to proste są równoległe.

 

Przykład:

Niech

\(l_1:y=3x+2\)

\(l_2:y=3x-2\)

Te proste są równoległe.

Natomiast prosta \(l_3: y = x-3\) nie jest do nich równoległa.

 

Zadanie:

Które z poniższych prostych są równoległe?

\(l_1: 3x+2y=0\)

\(l_2: 3x-2y-1=0\)

\(l_3: 2x-3y=0\)

\(l_4: -6x-4y+2=0\)

 

Odpowiedzi:

Jedynie proste \(l_1\)\(l_4\) są równoległe.

Polecamy również:

Komentarze (0)
Wynik działania 3 + 4 =
Ostatnio komentowane
skibidi
anonim • 2025-06-04 16:30:58
uuoloi0
anonim • 2025-06-03 17:46:25
Bardzo fajne interesujący Cy
anonim • 2025-06-01 19:21:22
dziękuję
anonim • 2025-05-31 17:22:28
polecajka
anonim • 2025-05-31 16:27:49