Proste prostopadłe – definicja, zadania

Dwie proste są prostopadłe jeśli iloczyn ich współczynników kierunkowych równy jest -1, tzn. dla prostych

l_1:y=a_1x+b_1

l_2:y=a_2x+b_2

Zachodzi a_1 \cdot a_2 = -1, czyli, innymi słowy a_1 = -\frac1{a_2}.

 

Przykład:

Niech

l_1:y=3x+2

l_2:y=-\frac13x+2

Te proste są prostopadłe.

Ale prosta l_3: y = \frac13x+2 nie jest prostopadła do żadnej z nich.

 

Zadanie:

Które z poniższych prostych są prostopadłe?

l_1: 3x+2y=0

l_2: 3x-2y-1=0

l_3: 2x-3y=0

l_4: -6x-4y+2=0

 

Odpowiedzi:

Jedynie proste l_2l_3 są prostopadłe.

Polecamy również:

Komentarze (0)
Wynik działania 3 + 5 =
Ostatnio komentowane
cool
xoxo • 2021-01-27 20:31:29
Bardzo Łatwe XD
Plazma • 2021-01-27 18:45:05
5
Anna D • 2021-01-27 16:49:07
:>
q • 2021-01-27 10:05:09
es
es • 2021-01-27 09:55:01