Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Injekcja (funkcja różnowartościowa)

Ostatnio komentowane
kox
marek • 2019-12-07 11:29:34
2222
22 • 2019-12-07 07:47:26
pozdrawiam ciepło z wigilii
kluska a • 2019-12-06 14:12:20
kjj
n • 2019-12-06 12:44:28
Dzk
Serek • 2019-12-05 21:29:59
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Jedną z podstawowych własności funkcji jest różnowartościowość. Funkcję nazywamy injekcją (iniekcją, funkcją różnowartościową) jeśli różnym argumentom przyporządkowuje ona różne wartości.

Definicja injekcji

Funkcja f:X \rightarrow Y jest injekcją wtedy i tylko wtedy, gdy dla dowolnych a,b\in X  spełniony jest warunek a \neq b \Rightarrow f(a) \neq f(b).

Uwaga:

Równoważnie funkcję różnowartościową można zdefiniować zastępując implikację pojawiającą się w powyższej definicji następującą: f(a)= f(b) \Rightarrow a=b. Ten warunek mówi o tym, że jeśli wartości dwóch argumentów są sobie równe to te argumenty również muszą być sobie równe a zatem muszą być tym samym argumentem.

 

By lepiej zrozumieć sens definicji dobrze jest przyjrzeć się przykładom.

Przykłady:

1. Funkcja wymierna f(x)= \frac{a}{x} dla dowolnego a \neq 0x \neq 0jest injekcją - nie ma dwóch argumentów, które miałyby tą samą wartość.

2. Funkcja liniowa (o ile nie jest funkcją stałą) jest funkcją różnowartościową - każdemu argumentowi odpowiada inna wartość.

3. Funkcja kwadratowa nie jest injekcją - dla dowolnego argumentu różnego od p (x-owa współrzędna wierzchołka) daje się znaleźć drugi argument przyjmujący dokładnie tą samą wartość.

4. Funkcje trygonometryczne nie są różnowartościowe - każda wartość przyjmowana przez dowolną z

Polecamy również:

Komentarze (0)
1 + 1 =