Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Funkcja wymierna - własności funkcji, przykłady

Ostatnio komentowane
Tekst zapewne zredagowany przez historyka. Tak naprawdę nic na temat rewolucyjnych osiąg...
furiat • 2019-08-15 11:10:28
Szkoda że nie ma zdań a tak poza tym to fajna strona
Nie kumata862 • 2019-08-06 19:59:23
Świetne, że można nauczyć się pisać dobry felieton. Przydaje się ta wiedza także p...
Szymon Owedyk • 2019-08-01 04:28:01
Super wskazówki, jak pisać reportaż. Swoje rady o tym, jak reportaż i felieton piszę,...
Szymon Owedyk • 2019-07-31 20:10:19
Sorry, ale to nie jest o tańcu śmierci, tylko o "Rozmowie..." w ogóle.
Andr • 2019-07-30 10:51:02
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Funkcją wymierną nazywamy funkcję postaci f(x)= \frac{W(x)}{V(x)} , gdzie W(x), V(x) są wielomianami (V(x) niezerowy), a zatem jest to funkcja będąca ilorazem dwóch funkcji wielomianowych.

Dziedziną funkcji f(x) jest dziedzina funkcji W(x) pomniejszona o pierwiastki funkcji V(x).

Najprostszą funkcją wymierną jest funkcja f(x) =  \frac{a}{x} , gdzie a \in \mathbb {R}. W tym przypadku licznikiem jest wielomian stopnia zero (funkcja stała), zaś mianownikiem wielomian pierwszego stopnia.

Wykresem funkcji f(x) =  \frac{a}{x} jest składająca się z dwóch ramion krzywa nazywana hiperbolą.

Funkcja wymierna

Jak widać z powyższego rysunku dla funkcji tej postaci dziedziną zawsze będzie zbiór liczb rzeczywistych z wyłączeniem zera. Dowolne przesunięcie funkcji f(x) =  \frac{a}{x} o wektor zmodyfikuje dziedzinę ale zawsze będzie ona postaci (- \infty ;p) \cup (p; +\infty ) (lub równoważnie: \mathbb{ R}  \setminus \{p\}), gdzie p jest x-ową współrzędną wektora przesunięcia.

Przykład:

Funkcja f(x) =  \frac{2}{x} przesunięta o wektor [1,0] będzie mieć dziedzinę \mathbb{ R}  \setminus \{1\}.

Funkcja wymierna

Własności funkcji f(x) =  \frac{a}{x}

Funkcja postaci f(x) =  \frac{a}{x} nie ma miejsc zerowych, jest różnowartościowa, przedziałami monotoniczna (tj. na przedziale każdego z ramion malejąca jeśli a jest dodatnie jak na powyższych rysunkach lub na przedziale każdego z ramion malejąca jeśli a jest ujemne), posiada asymptoty poziomą y=0 oraz pionową x=0. Jak zostało już wskazane, dziedziną funkcji

Polecamy również:

Komentarze (0)
3 + 5 =
echo $this->Html->script('core.min'); echo $this->Html->script('blockadblock.js'); echo $this->Html->script('fancybox/jquery.fancybox-1.3.4.min'); echo $this->Html->css('/js/fancybox/jquery.fancybox-1.3.4.min'); echo $this->Html->script('jnice/jquery.jNice', array('async' => 'async')); echo $this->Html->css('/js/jnice/jNice.min');