Funkcja wykładnicza – własności, przykłady, wykres, zadania

Funkcją wykładniczą jest funkcja postaci f(x) = a^x, przy czym a > 0a \neq 1.

 

Dla funkcji wykładniczej charakterystyczne jest to, że nie ma ona miejsc zerowych. Niezależnie jednak od tego jaki jest parametr a, do jej wykresu należy punkt (0,1), ponieważ \for_{a} (a^0 =1).

 

Zbiór wartości funkcji wykładniczej stanowią liczby dodatnie, tj. D^{-1}=(0,\infty).

Funkcja wykładnicza jest różnowartościowa, monotoniczna, nieokresowa i ciągła w całej swojej dziedzinie.

Nie jest ani parzysta ani nieparzysta.

Funkcja wykładnicza jest ograniczona od dołu przez oś X nazywaną jej asymptotą poziomą. Od góry funkcjia jest nieograniczona.

 

Monotoniczność funkcji wykładniczej w zależności od parametru a przedstawia się następująco:

Gdy a >0 funkcja jest rosnąca,

Gdy a<0 funkcja jest malejąca.

 

Przykład:

Funkcje f(x) = 2^x i g(x) = 3^x są rosnące.

Funkcja h(x) = (\frac 1 2)^x jest malejąca. 

 

Zauważmy, że gdyby funkcję wykładniczą przekształcić dodając bądź odejmując od niej jakąś liczbę, wykres jej ulega przesunięciu w górę lub w dół. Wówczas funkcja może mieć miejsce zerowe. Określamy ja rozwiązując odpowiednie równanie wykładnicze.

 

Przykład:

Dla funkcji f(x) = 3^x i powstałej z jej przekształcenia funkcji g(x) = 3^x - 2 mamy

3^x -2 = 0

3^x = 2

\log{3^x} = \log{2}

x\log{3} = \log{2}, zatem

x = \frac{\log{2}}{ \log{3}} = \log_3{2}

 

Przykład:

Innym możliwym przekształceniem wykresu funkcji wykładniczej jest przesunięcie wykresu w prawo/w lewo. W tym celu zmniejszamy lub zwiększamy argument funkcji o taką wartość, o jaką chcemy przesunąć wykres.

Niech zobrazują to funkcje f(x) = 3^xg(x) = 3^x + 2.

 

Zadanie:

Narysować wykres funkcji:

a) f(x) = 2^x +1,

b) f(x) = (\frac12)^x-1.

 

Odpowiedzi:

a)

b)

Polecamy również:

Komentarze (0)
Wynik działania 2 + 2 =
Ostatnio komentowane
Co za wstyd pomyśleć, że ja nie istnieje.
• 2024-04-12 15:30:23
supier
• 2024-04-11 18:27:13
bardzo pomocne
• 2024-04-09 17:22:24
Bardzo przydatne!
• 2024-03-24 16:49:06
Dziękujemy. Przydało się nam na historię podczas sprawdzianu. ;)
• 2024-03-21 18:20:09