Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Funkcja eksponencjalna

Szczególnym przypadkiem funkcji wykładniczej jest tak zwana funkcja eksponencjalna (inne nazwy to eksponent lub eksponenta), w której parametrem a jest liczba Eulera, f(x) = e ^{x} . Równoznacznym oznaczeniem jest \exp(x).

Wykres funkcji e^x widoczny jest poniżej.

Funkcja eksponencjalna

Dziedziną funkcji eksponent jest zbiór liczb rzeczywistych, zbiorem wartości zbiór liczb rzeczywistych dodatnich.

Nie posiada ona miejsc zerowych.

Podobnie jak wszystkie funkcje wykładnicze postaci y=a^x przechodzi przez punkt (0,1), z kolei w jedynce przyjmuje wartość e, stąd do wykresu funkcji należy także punkt (1,e).

 

Istotnymi własnościami funkcji eksponencjalnej jest jej różniczkowalność oraz całkowalność.

W szczególności zarówno pochodna jak i całka nieoznaczona z funkcji y=e^x są równe jej samej (z dokładnością do stałej w przypadku całkowania), tj.

y'=(e^x)'=e^x oraz  \int_{}^{} y dx= \int_{}^{} e^x dx=e^x+c, gdzie c - stała.

Zobacz również

Losowe zadania

Komentarze (0)
Wynik działania 5 + 3 =
Ostatnio komentowane
Lubicie mnie chociaż tutaj?
Dis • 2020-04-01 18:53:24
Nawet nawet
OlisiaSyb • 2020-04-01 17:33:11
fajnie
ls • 2020-04-01 13:17:22
Nie dokładnie o to mi chodziło ale przydatne. Pozdrawiam autora.
Mangle UwU • 2020-04-01 10:30:26
Bardzo słabe opracowanie jak na tak istotną książkę.
Andy • 2020-04-01 08:39:26