Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Granica niewłaściwa funkcji – przykłady, zadania

Ostatnio komentowane
Tekst zapewne zredagowany przez historyka. Tak naprawdę nic na temat rewolucyjnych osiąg...
furiat • 2019-08-15 11:10:28
Szkoda że nie ma zdań a tak poza tym to fajna strona
Nie kumata862 • 2019-08-06 19:59:23
Świetne, że można nauczyć się pisać dobry felieton. Przydaje się ta wiedza także p...
Szymon Owedyk • 2019-08-01 04:28:01
Super wskazówki, jak pisać reportaż. Swoje rady o tym, jak reportaż i felieton piszę,...
Szymon Owedyk • 2019-07-31 20:10:19
Sorry, ale to nie jest o tańcu śmierci, tylko o "Rozmowie..." w ogóle.
Andr • 2019-07-30 10:51:02
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Granice niewłaściwe definiujemy następująco: 

Def.: Funkcja f ma w punkcie x_0 granicę niewłaściwą +\infty jeśli dla każdego ciągu (x_n) zbieżnego do x_0 o wyrazach różnych od x_0 ciąg (f(x_n)) jest rozbieżny do +\infty.

Def.: Funkcja f ma w punkcie x_0 granicę niewłaściwą -\infty jeśli dla każdego ciągu (x_n) zbieżnego do x_0 o wyrazach różnych od x_0 ciąg (f(x_n)) jest rozbieżny do -\infty.

Stosujemy oznaczenia odpowiednio  \lim_{x \to x_0} f(x) = +\infty lub  \lim_{x \to x_0} f(x) = -\infty.

 

Ponadto definiujemy też granice jednostronne:

Def.: Funkcja f ma w punkcie x_0 granicę niewłaściwą prawostronną +\infty jeśli dla każdego ciągu (x_n) zbieżnego do x_0 o wyrazach większych od x_0 ciąg (f(x_n)) jest rozbieżny do +\infty.

Def.: Funkcja f ma w punkcie x_0 granicę niewłaściwą lewostronną +\infty jeśli dla każdego ciągu (x_n) zbieżnego do x_0 o wyrazach mniejszych od x_0 ciąg (f(x_n)) jest rozbieżny do +\infty.

Def.: Funkcja f ma w punkcie x_0 granicę niewłaściwą prawostronną -\infty jeśli dla każdego ciągu (x_n) zbieżnego do x_0 o wyrazach większych od x_0 ciąg (f(x_n)) jest rozbieżny do -\infty.

Def.: Funkcja f ma w punkcie x_0 granicę niewłaściwą lewostronną -\infty jeśli dla każdego ciągu (x_n) zbieżnego do x_0 o wyrazach mniejszych od x_0 ciąg (f(x_n)) jest rozbieżny do -\infty.

Stosujemy odpowiednie oznaczenia:

 \lim_{x \to x_0^+} f(x) = +\infty \lim_{x \to x_0^-} f(x) = +\infty,  \lim_{x \to x_0^+} f(x) = -\infty \lim_{x \to x_0^-} f(x) = -\infty.

 

Ponadto pisać będziemy też:

 \lim_{x \to x_0} f(x) = 0^+ gdy  \lim_{x \to x_0} f(x) = 0 oraz f(x) > 0 w sąsiedztwie punktu x_0,

 \lim_{x \to x_0} f(x) = 0^-  gdy  \lim_{x \to x_0} f(x) = 0 oraz f(x) < 0 w sąsiedztwie punktu x_0.

 

Do obliczania granic niewłaściwych wykorzystywane jest następujące twierdzenie:

Jeśli  \lim_{x \to x^0} f(x) = 0^+ \lim_{x \to x_0} g(x) > 0 to  \lim_{x \to x_0} \frac{g(x)}{f(x)} = +\infty.

Jeśli  \lim_{x \to x^0} f(x) = 0^+ \lim_{x \to x_0} g(x) < 0 to  \lim_{x \to x_0} \frac{g(x)}{f(x)} = -\infty.

Jeśli  \lim_{x \to x^0} f(x) = 0^- \lim_{x \to x_0} g(x) > 0 to  \lim_{x \to x_0} \frac{g(x)}{f(x)} = -\infty.

Jeśli  \lim_{x \to x^0} f(x) = 0^- \lim_{x \to x_0} g(x) < 0 to  \lim_{x \to x_0} \frac{g(x)}{f(x)} = +\infty.

 

Przykład:

 \lim_{x \to 3^+} \frac{x-2}{x^2-9} = [\frac1{0^+}] = +\infty 

 

 \lim_{x \to 3^+} \frac{x-5}{x^2-9} = [\frac{-2}{0^+}]=-\infty

 

 

Zadania:

Znaleźć granice  \lim_{x \to 5^+} \frac{1-x}{5-x} i  \lim_{x \to 5^-} \frac{1-x}{5-x}.

 

Odpowiedzi:

Granice wynoszą odpowiednio +\infty-\infty.

Polecamy również:

Komentarze (0)
1 + 5 =
echo $this->Html->script('core.min'); echo $this->Html->script('blockadblock.js'); echo $this->Html->script('fancybox/jquery.fancybox-1.3.4.min'); echo $this->Html->css('/js/fancybox/jquery.fancybox-1.3.4.min'); echo $this->Html->script('jnice/jquery.jNice', array('async' => 'async')); echo $this->Html->css('/js/jnice/jNice.min');