Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Twierdzenie cosinusów – dowód, zadania

Ostatnio komentowane
Niesamowite hostingserwery.com
Linux • 2019-06-16 16:47:25
przydalo sie
jjoojo • 2019-06-13 14:46:18
Nie tyle rozwód co uznanie małżeństwa za nieważne dr Arletta Bolesta adwokat kości...
Arletta Bolesta • 2019-06-12 13:59:29
Abstrakcjonizm operuje abstrakcją! Zrezygnował, jak sam autor pisze, z wszelkiej figurat...
Anna • 2019-06-11 17:31:16
Autor:
Drukuj
Drukuj
Rozmiar
AAA

 

Drugim z ważnych twierdzeń geometrycznych związanych z funkcjami trygonometrycznymi jest twierdzenie cosinusów, będące uogólnieniem twierdzenia Pitagorasa na trójkąty o dowolnych kątach.

 

 

Twierdzenie: W trójkącie kwadrat dowolnego boku równa się sumie kwadratów dwóch pozostałych boków pomniejszonej o podwojony iloczyn tych boków i cosinus kąta zawartego między nimi.

a^2 = b^2 + c^2 - 2bc \cos  \alpha

b^2 = a^2 + c^2 - 2ac \cos  \beta

c^2 = a^2 + b^2 - 2ab \cos  \gamma

 

Dowód:

Dowód przeprowadzimy dla równości a^2 = b^2 + c^2 - 2bc \cos  \alpha (dla pozostałych dwóch analogicznie).

Należy wziąć pod uwagę trzy sytuacje, w zależności od miary kąta  \alpha .

 

Gdy kąt ten jest kątem prostym, sytuacja trywializuje się, a równość sprowadza się do twierdzenia Pitagorasa (\cos 90^\circ = 0a^2 = b^2 + c^2).

 

 

 Zdecydowanie ciekawsze są przypadki, gdy kąt  \alpha  jest kątem ostrym lub kątem rozwartym. 

  

 

 

 

Gdy kąt  \alpha  jest ostry dzielimy trójkąt wysokością na dwa mniejsze w sposób taki, jak na rysunku. 

 

 

 

Wówczas \cos  \alpha =  \frac{x}{c} , zatem x = c \cos  \alpha .

Dla każdego z powstałych trójkątów stosujemy twierdzenie Pitagorasa:

x^2 + h^2 = c^2,

(b-x)^2 + h^2 = a^2.

Po przekształceniu obu równań przyjmują one postać

h =  \sqrt{c^2 - x^2} ,

h =  \sqrt{a^2 - (b-x)^2} .

Zatem

 \sqrt{c^2 - x^2}  =  \sqrt{a^2 - (b-x)^2}  

{c^2 - x^2}  =  {a^2 - (b^2 -2bx+ x^2})

Przenosząc odpowiednie wyrażenia na odpowiednie strony dostajemy

 

a^2 = c^2 - x^2 + b^2 - 2bx + x^2 = b^2 + c^2 - 2bc \cos  \alpha

 

Gdy  \alpha jest kątem rozwarty drugi trójkąt tworzymy prowadzący wysokość na przedłużenie boku 

Polecamy również:

Komentarze (0)
3 + 3 =
echo $this->Html->script('core.min'); echo $this->Html->script('blockadblock.js'); echo $this->Html->script('fancybox/jquery.fancybox-1.3.4.min'); echo $this->Html->css('/js/fancybox/jquery.fancybox-1.3.4.min'); echo $this->Html->script('jnice/jquery.jNice', array('async' => 'async')); echo $this->Html->css('/js/jnice/jNice.min');