Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Funkcje trygonometryczne dowolnego kąta – definicje

Ostatnio komentowane
essa
knopers • 2020-01-20 18:18:59
wy janusze spod biedronki hahahaha
ema • 2020-01-20 15:59:52
ELUWINA
KISIELEK • 2020-01-20 14:56:57
Fajne takie
Jarek • 2020-01-20 13:56:14
masno ni
Papryk • 2020-01-20 07:15:50
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Funkcje trygonometryczne można zdefiniować dla dowolnego kąta.

  

Wymaga to uściślenia pewnych pojęć.

Jeśli nazwiemy ramieniem początkowym kąta ramię zawarte w dodatniej półosi OX, to ramię końcowe tego kąta wyznacza go jednoznacznie.

 

 

 

Definicja funkcji trygonometrycznych dowolnego kąta:

Niech P(x,y) będzie dowolnym punktem na ramieniu końcowym kąta  \alpha , różnym od początku układu współrzędnych. Wówczas funkcje trygonometryczne kąta  \alpha wyznaczone są następująco:

\sin  \alpha =  \frac{y}{r}

\cos  \alpha =  \frac{x}{r}

\operatorname{tg}  \alpha =  \frac{y}{x}    (x \neq 0)

\operatorname{ctg} =  \frac{x}{y}    (y \neq 0)

gdzie r =  \sqrt{x^2 + y^2}

 

Przy takiej definicji funkcje trygonometryczne są określone dla dowolnego kąta, o ile wyrażenie po prawej stronie ma sens (tj. gdy mianownik jest różny od zera). Parametr r wyznaczany jest (z twierdzenia Pitagorasa) jako pierwiastek kwadratów xy.

 

Układ współrzędnych składa się z czterech ćwiartek.

 

W zależności od tego, w której ćwiartce znajduje się kąt, jego sinus, cosinus, tangens i cotangens mogą mieć różny znak. Pomocny w zapamiętaniu określoności znaku funkcji trygonometrycznych w zależności od ćwiartki, w której znajduje się kąt, jest następujący wierszyk:

 

 

W pierwszej ćwiartce wszystkie funkcje są dodatnie,

W drugiej tylko sinus.

W trzeciej tangens i cotangens,

A w czwartej cosinus.

Polecamy również:

Komentarze (0)
5 + 3 =