Translacja o wektor – definicja, wzór, zadania

Translacja to inaczej przesunięcie.

Punkt P = (x,y) przesunięty o wektor v = (x_v,y_v) ma współrzędne P' = (x+x_v,y+y_v).

O wektor można przesuwać całe figury - sprowadza się to do przesunięcia każdego punktu figury o ten wektor.

 

Przykład:

Przesunąć odcinek AB o wektor v = (1,2) gdy A = (0,3)B = (1,3).

Przesuwamy każdy z końców odcinka.

A' = (0+1,3+2)= (1,5)

B' = (1+1,3+2) = (2,5)

Zatem odcinek AB przesunięty wektor v ma końce w punktach (1,5)(2,5).

 

Zadanie:

Przesunąć odcinek AB o wektor v = (-2,5) gdy A = (1,0)B = (4,6).

 

Odpowiedzi:

Współrzędne nowych końców odcinka to (-1,5)(2,11).

Polecamy również:

Komentarze (0)
Wynik działania 3 + 5 =
Ostatnio komentowane
xd
• 2024-04-16 17:58:56
@Mariola - dziękujemy za zwrócenie uwagi, wpis został poprawiony. Pozdrawiamy :)
• 2024-04-16 07:36:55
Co za wstyd pomyśleć, że ja nie istnieje.
• 2024-04-12 15:30:23
supier
• 2024-04-11 18:27:13
bardzo pomocne
• 2024-04-09 17:22:24