Translacja o wektor – definicja, wzór, zadania

Translacja to inaczej przesunięcie.

Punkt P = (x,y) przesunięty o wektor v = (x_v,y_v) ma współrzędne P' = (x+x_v,y+y_v).

O wektor można przesuwać całe figury - sprowadza się to do przesunięcia każdego punktu figury o ten wektor.

 

Przykład:

Przesunąć odcinek AB o wektor v = (1,2) gdy A = (0,3)B = (1,3).

Przesuwamy każdy z końców odcinka.

A' = (0+1,3+2)= (1,5)

B' = (1+1,3+2) = (2,5)

Zatem odcinek AB przesunięty wektor v ma końce w punktach (1,5)(2,5).

 

Zadanie:

Przesunąć odcinek AB o wektor v = (-2,5) gdy A = (1,0)B = (4,6).

 

Odpowiedzi:

Współrzędne nowych końców odcinka to (-1,5)(2,11).

Polecamy również:

Komentarze (0)
Wynik działania 5 + 5 =
Ostatnio komentowane
Hejka
• 2023-03-28 17:50:28
;'
• 2023-03-28 17:07:50
to przetlumacz te zdania na polski a nie takie pisanie bez sensu by cos dalej wytlumaczyc
• 2023-03-26 12:31:24
Ok
• 2023-03-25 17:47:03
Git
• 2023-03-23 20:24:42