Translacja o wektor – definicja, wzór, zadania

Translacja to inaczej przesunięcie.

Punkt P = (x,y) przesunięty o wektor v = (x_v,y_v) ma współrzędne P' = (x+x_v,y+y_v).

O wektor można przesuwać całe figury - sprowadza się to do przesunięcia każdego punktu figury o ten wektor.

 

Przykład:

Przesunąć odcinek AB o wektor v = (1,2) gdy A = (0,3)B = (1,3).

Przesuwamy każdy z końców odcinka.

A' = (0+1,3+2)= (1,5)

B' = (1+1,3+2) = (2,5)

Zatem odcinek AB przesunięty wektor v ma końce w punktach (1,5)(2,5).

 

Zadanie:

Przesunąć odcinek AB o wektor v = (-2,5) gdy A = (1,0)B = (4,6).

 

Odpowiedzi:

Współrzędne nowych końców odcinka to (-1,5)(2,11).

Polecamy również:

Komentarze (0)
Wynik działania 5 + 1 =
Ostatnio komentowane
Śkad wziął się taki wynik?
• 2022-12-05 21:24:47
Ok
• 2022-12-05 13:53:43
ok
• 2022-12-02 16:29:38
dzięki
• 2022-11-28 16:21:19
ok
• 2022-11-25 15:27:39