Symetria osiowa – geometria analityczna, definicja, wzór, zadania

Symetria osiowa jest odbiciem względem pewnej prostej.

Aby wyznaczyć obraz P'punktu P w semetrii osiowej, gdzie osią symetrii jest prosta l o równaniu l: y = ax+b należy wyznaczyć prostą prostopadłą do prostej l, przechodzącą przez punkt P. Szukana prosta będzie mieć równanie k: y = -\frac1 a x + c. Aby wyznaczyć c należy za zmienne xy podstawić współrzędne punktu P. Ostatnim etapem jest znalezienie współrzędnych punktu P', w oparciu o fakt, że punkt przecięcia się prostych lk jest środkiem odcinka PP'.

Oś, symetria osiowa

 

Znajdź obraz punktu względem osi symetrii - przykład

Znaleźć obraz punktu P = (3,2) w symetrii osiowej, gdy osią symetrii jest prosta l:y=2x-1.

Zacznijmy od wyznaczenia prostej prostopadłej.

k:y=-\frac12x+c

 

2 = -\frac 1 2 \cdot3+c

c = \frac72

k:y=-\frac12x+\frac72 

Szukany punkt P' leży na prostej k, natomiast na przecięciu prostych kl znajduje się środek odcinka PP'. Zatem S_{PP'} znajdziemy rozwiązując równanie

-\fra12x+\frac72=2x-1

Stąd, po przekształceniu mamy x = \frac95.

Podstawiamy teraz otrzymany wynik do jednego z równań prostych, otrzymując y = -\frac12\cdot\frac95+\frac72=\frac{13}5.

Zatem punkt S_{PP'} ma współrzędne (\frac95,\frac{13}5).

Ale zauważmy też, że jeśli oznaczymy współrzędne punktu P'przez (x_{P'},y_{P'}), to punkt S_{PP'} będzie mieć współrzędne (\frac{3+x_{P'}}2,\frac{2+y_{P'}}2).

Łącząc powyższe fakty, mamy następującą parę równości:

\frac{3+x_{P'}}2 = \frac 95 i \frac{2+y_{P'}}2 = \frac{13}5,

skąd (przekształcając) wyznaczyć możemy x_{P'} = \frac{18}5-3=\frac35y_{P'} = \frac{26}5-2 = \frac{16}5.

Ostatecznie zatem, szukany punkt P' ma współrzędne (\frac35,\frac{16}5)

Oś, symetria osiowa 

 

Symetria osiowa - zadanie

Znaleźć obraz punktu (1,3) w symetrii względem prostej o równaniu ogólnym x + 2 y -2 = 0.

 

Odpowiedz:

(-1,-1)

Polecamy również:

Komentarze (2)
Wynik działania 1 + 4 =
POMARAŃCZOWE
2021-04-24 18:44:46
DOBREEEEEEEEE
devito
2020-04-20 21:15:14
Dziękuję, dalej nic nie rozumiem.
Ostatnio komentowane
nj.
ewas • 2021-05-11 17:12:12
cdrtyu
lokl • 2021-05-11 12:47:35
Na ile wolna wola jest rzeczywiście wolna skoro podlega prawom?
Imię • 2021-05-11 12:32:46
moja ulubiona strona z interpretacjami :)
Keiteki LO • 2021-05-11 07:23:48
łatwe działanie
easy • 2021-05-10 17:17:48