Jednokładność – zadania, wzory

Na jednokładność można patrzeć jak na pewne przeskalowanie (połączone z przesunięciem) danej figury.

Ze względów praktycznych rozważamy jednokładność o środku w początku układu współrzędnych (każda inna sytuacja jest sprowadzalna do tej poprzez złożenie odpowiednich translacji).

Obrazem punktu \(P(x,y)\) w jednokładności o środku w punkcie \((0,0)\) i skali \(k\) jest punkt \(P'(kx,ky)\).

 

Przykład:

Znaleźć obraz odcinka \(AB\) w jednokładności o środku w początku układu współrzędnych i skali \(k = 2\), jeśli \(A=(2,3)\), a \(B = (4,1)\).

Policzmy:

\(A' = (k\cdot2,k\cdot3) = (4,6)\)

\(B' = (k\cdot 4, k\cdot 1) = (8,2)\)

 

Zadanie:

Znaleźć obraz tego samego odcinka \(AB\) w jednokładności o środku w początku układu współrzędnych i skali \(k = -\frac12\).

 

Odpowiedzi: 

Szukany odcinek ma końce w punktach \(A' = (-1,-\frac32)\) i \(B' = (-2,-\frac12)\).

Polecamy również:

Komentarze (1)
Wynik działania 2 + 2 =
lola
2015-11-25 15:06:14
a gdzie wzór?
Ostatnio komentowane
skibidi
anonim • 2025-06-04 16:30:58
uuoloi0
anonim • 2025-06-03 17:46:25
Bardzo fajne interesujący Cy
anonim • 2025-06-01 19:21:22
dziękuję
anonim • 2025-05-31 17:22:28
polecajka
anonim • 2025-05-31 16:27:49