Z omówionych wcześniej przykładów ciał wykonujących drgania harmoniczne wynika, że każdy układ ma charakterystyczny dla siebie okres drgań (T), a więc i częstotliwość (f), gdyż:
\(f= \frac{1}{T} \)
Częstotliwość drgań własnych układu (f0) może zależeć m.in. od takich wielkości jak: masa, moment bezładności, długość czy współczynnik sprężystości.
Jeżeli oscylator harmoniczny jest pobudzany do drgań siłą, która jest okresowo zmienna, to porusza się on wówczas z częstotliwością wymuszenia (f). W takim przypadku amplituda drgań (A) silnie zależy od częstotliwości. Jeżeli częstotliwości zmian siły wymuszającej drgania jest równa częstotliwości drgań własnych układu (f = f0), to amplituda osiąga wartość maksymalną – mamy wówczas do czynienia ze zjawiskiem rezonansu.
Cechą charakterystyczną rezonansu jest wyjątkowo intensywne pochłanianie energii, będącej wynikiem pracy wykonywanej przez siłę wymuszającą drgania układu.
Najprostszym przykładem rezonansu jest huśtawka, wprawiana w ruch harmoniczny stosunkowo niewielką siłą i mimo to osiągająca dużą amplitudę drgań. Jest to możliwe tylko wtedy, gdy pchnięcia huśtawki następują zawsze w kierunku zgodnym z jej ruchem oraz gdy ich częstotliwość jest zgodna z częstotliwością ruchu własnego huśtawki.