Drgania wymuszone i rezonans

Z omówionych wcześniej przykładów ciał wykonujących drgania harmoniczne wynika, że każdy układ ma charakterystyczny dla siebie okres drgań (T),  a więc i częstotliwość (f), gdyż:

f= \frac{1}{T}
 

Częstotliwość drgań własnych układu (f0) może zależeć m.in. od takich wielkości jak:  masa, moment bezładności, długość czy współczynnik sprężystości.

Jeżeli oscylator harmoniczny jest pobudzany do drgań siłą, która jest okresowo zmienna, to porusza się on wówczas z częstotliwością wymuszenia (f). W takim przypadku amplituda drgań (A) silnie zależy od częstotliwości. Jeżeli częstotliwości zmian siły wymuszającej drgania jest równa częstotliwości drgań własnych układu (f = f0), to amplituda osiąga wartość maksymalną – mamy wówczas do czynienia ze zjawiskiem rezonansu.

Cechą charakterystyczną rezonansu jest wyjątkowo intensywne pochłanianie energii, będącej wynikiem pracy wykonywanej przez siłę wymuszającą drgania układu.

Najprostszym przykładem rezonansu jest huśtawka, wprawiana w ruch harmoniczny stosunkowo niewielką siłą i mimo to osiągająca dużą amplitudę drgań. Jest to możliwe tylko wtedy, gdy pchnięcia huśtawki następują zawsze w kierunku zgodnym z jej ruchem oraz gdy ich częstotliwość jest zgodna z częstotliwością ruchu własnego huśtawki.

Polecamy również:

Komentarze (0)
Wynik działania 5 + 2 =
Ostatnio komentowane
Esa
• 2022-01-21 07:10:34
b
• 2022-01-20 22:38:51
Super
• 2022-01-19 19:48:31
ok
• 2022-01-19 18:05:54
No ok
• 2022-01-19 17:29:47