Amplituda i wychylenie

Wychylenie (x) w ruchu harmonicznym opisane jest przez funkcję sinus i ma następującą postać:

\(x=Asin( \omega t)\)

gdzie: A – amplituda drgań, ω – częstość kołowa drgań, t – czas, ωt - faza drgań.


Z powyższego równania wynika, że maksymalna wartość wychylenia ma miejsce wtedy, gdy sinus osiąga swoje maksymalne skrajne wartości tj. 1 lub -1, wówczas x = A lub x = -A.

Maksymalne wychylenie z położenia równowagi nazywane jest amplitudą drgań (A).

Na poniższym wykresie przedstawiono zależność wychylenia od fazy drgań dla pewnego ruchu harmonicznego.

Na wykresie widać, że ciało osiąga maksymalne wychylenia dla ωt = 0,5π oraz  ωt = 1,5π, czyli dla kątów (wyrażonych w radianach), przy których funkcja sinus przyjmuje maksymalne skrajne wartości.

Polecamy również:

Komentarze (2)
Wynik działania 1 + 5 =
JAPIERDOLE
2017-09-10 16:28:41
Co to ma byc ?
Chuj
2017-02-09 10:28:51
Co to jest XD
Ostatnio komentowane
Może być
• 2025-03-27 18:35:05
siema mega fajne
• 2025-03-22 08:47:31
dzięki
• 2025-03-10 15:14:41
bardzo to działanie łatwe
• 2025-03-03 13:00:02
Jest nad czym myśleć. PEŁEN POZYTYW.
• 2025-03-02 12:32:53