Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Oscylator harmoniczny tłumiony

Ostatnio komentowane
Naprawdę swietne wytłumaczenie o co chodzi z energia kinetyczna wzgledem ukladu odniesie...
Tom02 • 2018-08-18 20:49:41
Uwaga czytelniku! Tomek przyszedł na świat sto lat później.
Zaraza • 2018-08-18 11:27:47
"Jezu Chry..."! Dawno już nie czytałem tak czerwonego, komuszego, wypaczonego opracowani...
Otwórz oczy • 2018-08-15 18:21:31
Według mnie bardzo przydatne dzięki temu tekstowi mniej więcej zrozumiałam jak dział...
Emilia • 2018-07-26 20:05:25
@Hasher To zależy już od tłumacza przekładu(Pisma zostały napisane w kilku językach ...
Hgfhfg • 2018-07-09 11:34:37
Autor:
Drukuj
Drukuj
Rozmiar
AAA

W przypadku rzeczywistych oscylatorów harmonicznych energia mechaniczna drgań maleje, gdyż zewnętrzne siły oporu (np. tarcie), spowalniają drgania i powodują przekształcenie się energii mechanicznej w energię termiczną.

W związku z powyższym o ruchu rzeczywistego oscylatora harmonicznego mówimy, że wykonuje on drgania tłumione, charakteryzujące się zmniejszającą amplitudą oraz zwiększającym się okresem drgań.

Na wykresie przedstawiono zależność wychylenia oscylatora od  czasu, w przypadku drgań tłumionych. Asymptotami tego wykresu są krzywe spełniające równanie:

x=e ^{- \frac{bt}{2m} }
 

gdzie: e – podstawa logarytmów naturalnych, b – stała tłumienia, która zależy od właściwości mechanicznych oscylatora i ośrodka, w którym się on znajduje, t – czas, m – masa oscylatora.

Okres drgań tłumionego oscylatora harmonicznego można wyrazić następująco:

T=2 \pi  \sqrt{ \frac{4m ^{2} }{4mk-b ^{2} } }

gdzie: k – współczynnik sprężystości.

Polecamy również:

Komentarze (0)
1 + 2 =