Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Twierdzenie Eulera o wielościanach

Ostatnio komentowane
xd?
xd • 2018-10-14 17:05:06
kebać
hui • 2018-10-14 15:04:19
super
marca • 2018-10-14 10:28:01
sss
ssss • 2018-10-14 09:59:46
YIFDYIFDHYIFYHFVIY8FPY
OLOOLO • 2018-10-13 17:27:12
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Prawdziwe jest następujące twierdzenie o wielościanach (zwykłych, wypukłych):

Jeśli S oznacza liczbę ścian, W liczbę wierzchołków, a K liczbę krawędzi, to zachodzi W + S = K +2.

Tożsamość tą nazywamy wzorem Eulera dla wielościanów.

 

Dowód wymaga odrobinę gimnaztyki umysłu - wyobraźmy sobie wielościan, którego jedną ze ścian odrzucamy, by następnie rozciągnąć go i rozłożyć na płaszczyźnie. Teraz traktować go możemy jako grupę wielokątów o wspólnych bokach.

Skorzystamy z indukcji. 

Jeśli taki wielokąt ograniczymy do jednej ściany, będziemy mieć S=1, zaś W = K, możemy więc zapisać W + S = K+1.

Dołączenie kolejnej ściany zwiększy liczbę ścian o 1, a liczbę wierzchołków o jeden mniej niż liczbę krawędzi, zatem obie strony równości wzrosną o tyle samo. Kontynuując to rozumowanie dochodzimy do wniosku, że równość będzie zawsze prawdziwa.

Na koniec dołączmy odrzuconą początkowo ścianą, tworząc znów wielościan - jej dołączenie spowoduje domknięcie wielokąta, a wzór będzie miał postać W + S = K +2, co było do udowodnienia.

Polecamy również:

Komentarze (0)
5 + 1 =