Bryły podobne

Dwie bryły są podobne jeśli odległości między punktami jednej są proporcjonalne do odległości między odpowiednimi punktami drugiej.

 

 

Stosunek odległości między odpowiednimi punktami nazywamy skalą podobieństwa.

 

Twierdzenie: Jeśli skala podobieństwa brył podobnych jest równa \(a : b\), to stosunek pół powierzchni tych brył jest równy \(a^{2}:b^{2}\), a stosunek objętości \(a^{3}:b^{3}\).

 

 

Zadanie:

Ile wynosi skala podobieństwa dwóch kul, jeśli stosunek objętości tych kul jest równy:

a) \( \frac{1}{216} \),

b) \( \frac{125}{27} \),

c) \(0,216\).

 

 

Odpowiedzi:

a) \(1:6\),

b) \(5:3\),

c) \(3:5\)

Polecamy również:

Komentarze (0)
Wynik działania 3 + 3 =
Ostatnio komentowane
Ok
anonim • 2025-10-19 16:19:41
w 1984 roku??))
anonim • 2025-10-07 14:30:35
e
anonim • 2025-10-04 17:00:58
tekst bardzo przydatny
anonim • 2025-09-29 16:38:47
BARDZO MI TO POMOGŁO NA ZADANIE Z HISTORI
anonim • 2025-09-16 18:04:43