Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Równanie koła – wzór, zadania

Ostatnio komentowane
Tekst zapewne zredagowany przez historyka. Tak naprawdę nic na temat rewolucyjnych osiąg...
furiat • 2019-08-15 11:10:28
Szkoda że nie ma zdań a tak poza tym to fajna strona
Nie kumata862 • 2019-08-06 19:59:23
Świetne, że można nauczyć się pisać dobry felieton. Przydaje się ta wiedza także p...
Szymon Owedyk • 2019-08-01 04:28:01
Super wskazówki, jak pisać reportaż. Swoje rady o tym, jak reportaż i felieton piszę,...
Szymon Owedyk • 2019-07-31 20:10:19
Sorry, ale to nie jest o tańcu śmierci, tylko o "Rozmowie..." w ogóle.
Andr • 2019-07-30 10:51:02
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Koło jest zbiorem punktów oddalonych od danego punktu (zwanego środkiem koła) o odległość nie większą niż zadana. W geometrii analitycznej koło opisane jest przez następującą nierówność:

(x-x_S)^2+(y-y_S)^2 \le r^2, gdzie (x_S,y_S) - współrzędne środka koła, natomiast r - jego promień.

Jest zatem koło okręgiem z wnętrzem (dokładniej: jest zbiorem punktów leżących na okręgu oraz wewnątrz niego).

 

Przykład:

Sprawdź czy punkt P należy do koła zadanego jako x^2+y^2-8y+8 \le 0P = (1,2).

W tym celu podstawiamy współrzędne punktu do równania okręgu i sprawdzamy, czy nierówność jest spełniona:

1^2+2^2-8\cdot2+8\le0

1+4-16+8\le0

-3 \le 0 

Nierówność jest prawdziwa, zatem punkt (1,2) należy do rozważanego koła.

 

Zadanie:

Sprawdzić, czy punkt (-3,2) leży poza kołem x^2+y^2-12x\le0.

 

Odpowiedzi:

Tak, ten punkt leży poza kołem.

Polecamy również:

Komentarze (0)
4 + 5 =
echo $this->Html->script('core.min'); echo $this->Html->script('blockadblock.js'); echo $this->Html->script('fancybox/jquery.fancybox-1.3.4.min'); echo $this->Html->css('/js/fancybox/jquery.fancybox-1.3.4.min'); echo $this->Html->script('jnice/jquery.jNice', array('async' => 'async')); echo $this->Html->css('/js/jnice/jNice.min');