Równanie koła – wzór, zadania

Koło jest zbiorem punktów oddalonych od danego punktu (zwanego środkiem koła) o odległość nie większą niż zadana. W geometrii analitycznej koło opisane jest przez następującą nierówność:

(x-x_S)^2+(y-y_S)^2 \le r^2, gdzie (x_S,y_S) - współrzędne środka koła, natomiast r - jego promień.

Jest zatem koło okręgiem z wnętrzem (dokładniej: jest zbiorem punktów leżących na okręgu oraz wewnątrz niego).

 

Przykład:

Sprawdź czy punkt P należy do koła zadanego jako x^2+y^2-8y+8 \le 0P = (1,2).

W tym celu podstawiamy współrzędne punktu do równania okręgu i sprawdzamy, czy nierówność jest spełniona:

1^2+2^2-8\cdot2+8\le0

1+4-16+8\le0

-3 \le 0 

Nierówność jest prawdziwa, zatem punkt (1,2) należy do rozważanego koła.

 

Zadanie:

Sprawdzić, czy punkt (-3,2) leży poza kołem x^2+y^2-12x\le0.

 

Odpowiedzi:

Tak, ten punkt leży poza kołem.

Polecamy również:

Komentarze (0)
Wynik działania 3 + 4 =
Ostatnio komentowane
Śkad wziął się taki wynik?
• 2022-12-05 21:24:47
Ok
• 2022-12-05 13:53:43
ok
• 2022-12-02 16:29:38
dzięki
• 2022-11-28 16:21:19
ok
• 2022-11-25 15:27:39