Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Długość odcinka – wzór, zadania

Ostatnio komentowane
Dziękuję za to. Bardzo pomocne.
MatyldaQ • 2020-02-23 16:39:13
gut gut
twój stary kręci się jak bęben w pralce • 2020-02-23 16:04:05
like
brzoza • 2020-02-23 15:16:38
e
essa • 2020-02-22 20:02:53
zupa je
pupa • 2020-02-22 16:10:06
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Długość odcinka o końcach w punktach A(x_A,y_A)B(x_B,y_B) jest równa |AB| =  \sqrt{(x_B-x_A)^2+(y_B-y_A)^2} .

Wynik ten jest wnioskiem z twierdzenie Pitagorasa.

Niech dane będą dwa punkty AB o współrzędnych A(x_A,y_A) oraz B(x_B,y_B). Zdefiniujmy punkt C jako (x_B,y_A).

 

Otrzymamy w ten sposób trójkąt prostokątny, możemy zatem zapisać (przyjmując odpowiednie oznaczenia)

a^2 + b^2 = c^2, co po przekształceniu ma postać c =  \sqrt{a^2 + b^2} .

Zauważmy następnie, że

 

b = x_B - x_A oraz  a = y_B - y_A,

stąd zaś natychmiast wynika, że

 

c =  \sqrt{(x_B-x_A)^2+(y_B-y_A)^2} , co też było do pokazania. 

 

Przykład:

Policzyć długość odcinka o końcach w punktach (-2,3)(1,-1).

Jeśli oznaczymy te punkty jako AB to długość odcinka AB będzie równa|AB| =  \sqrt{(1+2)^2+(-1-3)^2} =  \sqrt{9+16}  =  \sqrt{25} =5.

 

Zadanie:

Jaka jest długość odcinka o końcach w punktach (5,5)(1,-3)?

 

Odpowiedzi:

Długość tego odcinka wynosi 4 \sqrt{5} .

Polecamy również:

Komentarze (0)
2 + 1 =