Gęstość energii

Objętościowa gęstość energii (w) jest równa ilorazowi energii zgromadzonej wewnątrz kondensatora (W) do objętości (V) pola elektrycznego pomiędzy jego okładkami.

\(w= \frac{W}{V} \)

Ponieważ energia wewnątrz kondensatora jest równa \(W= \frac{1}{2} CU ^{2} \) , a jego pojemność  oraz napięcie można wyrazić odpowiednio \(C= \frac{ \epsilon _{0} \epsilon S}{d} \)  oraz \(U=E \cdot d\) , to gęstość można również zapisać w postaci:

\(w= \frac{ \frac{1 }{2}CU ^{2} }{V} = \frac{ \frac{1}{2} \cdot \frac{ \epsilon _{0} \epsilon S }{d} E ^{2}d ^{2} }{Sd} = \frac{1}{2} \epsilon _{0} \epsilon E ^{2} \)
 
gdzie: ε0 – przenikalność elektryczna próżni, ε – przenikalność dielektryczna, S – pole powierzchni okładek kondensatora, d – odległość między okładkami, V = Sd, E – natężenie pola elektrycznego wewnątrz kondensatora.

Z ostatniego równania wynika, że gęstość energii zgromadzonej we wnętrzu kondensatora zależy tylko od kwadratu natężenia pola elektrycznego oraz od rodzaju substancji dielektrycznej, znajdującej się pomiędzy jego okładkami.

Polecamy również:

Komentarze (0)
Wynik działania 4 + 4 =
Ostatnio komentowane
skibidi
anonim • 2025-06-04 16:30:58
uuoloi0
anonim • 2025-06-03 17:46:25
Bardzo fajne interesujący Cy
anonim • 2025-06-01 19:21:22
dziękuję
anonim • 2025-05-31 17:22:28
polecajka
anonim • 2025-05-31 16:27:49