Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Monotoniczność ciągu – definicja, przykłady, zadania

Ostatnio komentowane
Tekst zapewne zredagowany przez historyka. Tak naprawdę nic na temat rewolucyjnych osiąg...
furiat • 2019-08-15 11:10:28
Szkoda że nie ma zdań a tak poza tym to fajna strona
Nie kumata862 • 2019-08-06 19:59:23
Sorry, ale to nie jest o tańcu śmierci, tylko o "Rozmowie..." w ogóle.
Andr • 2019-07-30 10:51:02
Mądre to
Zbyszek • 2019-07-27 08:44:21
Sekta według przeciwników stosowania tego terminu jest elementem pseudonauki, nie uznawa...
uczen Jezusa • 2019-07-30 10:16:33
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Jedną z podstawowych własności ciągów jest monotoniczność.

 

Definicja:

Ciąg (a_{n}) nazywam rosnącym jeśli każdy jego następny wyraz jest większy od poprzedniego (formalnie \forall {n \in \mathbb N} (a_{n+1} > a_n)).

Ciąg (a_{n}) nazywam malejącym jeśli każdy jego następny wyraz jest mniejszy od poprzedniego (formalnie \forall {n \in \mathbb N} (a_{n+1} < a_n)).

Ciąg (a_{n}) nazywam nierosnącym jeśli każdy jego następny wyraz jest niewiększy od poprzedniego (formalnie \forall {n \in \mathbb N} (a_{n+1}  \ge  a_n)).

Ciąg (a_{n}) nazywam niemalejącym jeśli każdy jego następny wyraz jest niemniejszy od poprzedniego (formalnie \forall {n \in \mathbb N} (a_{n+1}  \le  a_n)). Ciąg (a_{n}) nazywam stałym jeśli każdy jego następny wyraz jest równy poprzedniemu (formalnie \forall {n \in \mathbb N} (a_{n+1}  =  a_n)).

Jeśli nie zachodzi żadna z powyższych sytuacji, ciąg jest niemonotoniczny.

 

Zauważmy, że każdy z formalnych warunków można zapisać jako różnicę wyrazu następnego i poprzedniego, np. dla ciągu rosnącego:a_{n+1} - a_n >0, itd. Ta obserwacja przydatna będzie przy badaniu monotoniczności ciągów. 

  

Przykład:

Zbadać monotoniczność ciągu o wyrazie ogólnym a_n = n^2 - n + 1.

W tym celu sprawdzamy jaka jest różnica dwóch kolejnych wyrazów tego ciągu.a_{n+1} - a_n = ((n+1)^2 - (n+1) + 1) - (n^2 - n +1) =

n^2 + 2n + 1 -n - 1 +1 - n^2 + n-1 = 2n > 0 \forall n \in \mathbb N

Zatem ciąg jest rosnący.

 

Innym sposobem badania monotoniczności ciągów jest porównanie stosunku kolejnych dwóch wyrazów do jedynki. Jeśli stosunek wyrazu następnego do poprzedniego jest większy

Polecamy również:

Komentarze (0)
1 + 2 =
echo $this->Html->script('core.min'); echo $this->Html->script('blockadblock.js'); echo $this->Html->script('fancybox/jquery.fancybox-1.3.4.min'); echo $this->Html->css('/js/fancybox/jquery.fancybox-1.3.4.min'); echo $this->Html->script('jnice/jquery.jNice', array('async' => 'async')); echo $this->Html->css('/js/jnice/jNice.min');