Własności funkcji ciągłych

Z funkcjami ciągłymi związane są trzy podstawowe twierdzenia analizy matematycznej, tj. twierdzenie Darboux oraz dwa twierdzenia Weierstrassa o funkcji ciągłej.

 

Twierdzenie Darboux

Jeśli funkcja f jest ciągła na przedziale [a,b] oraz f(a) \neq f(b) to funkcja ta przyjmuje w przedziale (a,b) każdą wartość c taką, że

jeśli f(a) < f(b) to f(a) \le c \le f(b) oraz

jeśli f(b) < f(a) to f(b) \le c \le f(a).

 

Innymi słowy dla argumentów z przedziału (a,b) wartości funkcji znajdują się pomiędzy f(a)f(b).

 

Twierdzenie Darboux pociąga za sobą następujący wniosek:

Jeśli f jest ciągła na [a,b] oraz f(a)<0 \wedge f(b)>0 lub f(a)>0 \wedge f(b)<0 to dla przynajmniej jednego c \in(a,b) mamy f(c) = 0.

 

Wniosek ten bywa szczególnie przydatny przy dowodzeniu tzw. twierdzeń egzystencjalnych, tj. takich, w których dowodzimy istnienia czegoś (jakiegoś obiektu) bez wskazywania konkretnego jego przykładu.

 

Przykład:

Niech f(x) = 3x^2+2x-4.

Zauważmy, że f(0) = 0 + 2 -4 = -2 <0 oraz f(1) = 3 + 2 - 4 = 1 >0.

Funkcja kwadratowa jest ciągła w całej swojej dziedzinie, a zatem w szczególności jest ciągła w przedziale [0,1], którego krańce przyjmują wartości odpowiednio powyżej i poniżej zera, zatem funkcja f ma w tym przedziale miejsce zerowe.

 

I twierdzenie Weierstrassa:

Funkcja ciągła na przedziale domkniętym i ograniczonym jest ograniczona.

 

II twierdzenie Weierstrassa:

Funkcja ciągła na przedziale domkniętym i ograniczonym przyjmuje wartość największą oraz najmniejszą.

 

Oba twierdzenia opisują zachowanie funkcji w przedziałach typu [a,b]. Szczególnie istotne w teorii ekstremów funkcji jest drugie twierdzenie, które często bywa stosowane w dowodach pewnych innych twierdzeń.

Polecamy również:

Komentarze (0)
Wynik działania 2 + 5 =
Ostatnio komentowane
zajefajne
• 2024-06-12 14:00:02
q
• 2024-06-10 20:15:55
ok
• 2024-06-05 13:52:17
nadal nie umiem tego napisać
• 2024-06-04 10:48:42
Mógłby być jeszcze do tego cały utwór napisany.
• 2024-06-03 19:41:43