Zasada superpozycji pól elektrostatycznych

Zasada superpozycji jest narzędziem umożliwiającym znajdowanie wypadkowego natężenia pola elektrostatycznego w przypadku, gdy jest ono wytworzone przez układ n ładunków punktowych.

Zasada ta polega na wektorowym dodawaniu wszystkich pól elektrostatycznych, pochodzących od wszystkich ładunków punktowych znajdujących się w danym układzie.

 \vec{E _{w} } = \sum_{i=1}^{n}  \vec{E _{i} }
 
gdzie: Ew – wypadkowe natężenie pola, Ei – natężenie pola pochodzące od i-tego ładunku punktowego.

Zasada superpozycji pól elektrostatycznych – przykład 1.

W wierzchołkach kwadratu umieszczono cztery jednakowe, punktowe ładunki elektryczne. Znajdź wartość wypadkowego natężenia pola w środku tego kwadratu.

Rozwiązanie:
Na rysunku przedstawiono sytuację z zadania, zaznaczając kierunki natężeń pól pochodzących od wszystkich ładunków punktowych zakładając, że są one dodatnie.


Ponieważ ładunki są jednakowe i odległość od każdego z nich do punktu, w którym badamy pole jest taka sama (równa połowie przekątnej kwadratu), to wartości wszystkich czterech pól muszą być sobie równe.

Z rysunku wynika, że pole E1 jest równoważone przez pole E4, natomiast pole E2 przez pole E3.Wypadkowe pole musi więc być w tym przypadku równe zero.

Zasada superpozycji pól elektrostatycznych – przykład 2.

Dwa ładunki o wartościach q1 = 2C i q2 = 3C znajdują się w próżni w odległości d = 1m. Ile wynosi wypadkowe natężenie pola w punkcie leżącym pośrodku tych ładunków?

Rozwiązanie:
Sytuacja z zadania została przedstawiona na rysunku.


Ponieważ wektory E1 i E2 są skierowane przeciwnie, to zasada superpozycji w tym przypadku ma postać:
Ew = E1 – E2

Natężenia odpowiednich pół są równe:
E _{1} =k _{0} \frac{q _{1} }{r ^{2} }  = \frac{k _{0}q _{1}  }{\left( \frac{d}{2}\right) ^{2}  } = \frac{4k _{0}q _{1}  }{d ^{2} }

E _{2} =k _{0} \frac{q _{2} }{r ^{2} }  = \frac{k _{0}q _{2}  }{\left( \frac{d}{2}\right) ^{2}  } = \frac{4k _{0}q _{2}  }{d ^{2} } , więc wypadkowe pole można wyrazić następująco:

E _{w}  = \frac{4k _{0}q _{1}  }{d ^{2} } -\frac{4k _{0}q _{2}  }{d ^{2} } =\frac{4k _{0} }{d ^{2} } (q _{1} - q_{2} )

E _{w} = \frac{4 \cdot 9 \cdot 10 ^{9}  \frac{Nm ^{2} }{C ^{2} } }{1m ^{2} } (2C-3C)=-36 \cdot 10 ^{9}  \frac{N}{C}

Znak minus oznacza, że wypadkowe natężenie pola jest skierowane przeciwnie do kierunku osi x.

Polecamy również:

Komentarze (4)
Wynik działania 3 + 5 =
Imię/nick
2019-01-27 16:50:06
Skomentuj tekst
coś
2017-09-18 16:49:12
pokazane są podstawowe banalne przykłady, nic ciekawego. 2/10
Janek
2015-12-08 19:03:56
Może być, ale dało się lepiej to napisać
pozderki
2015-02-25 17:32:13
fantastyczne
Ostatnio komentowane
Czyli,powiedzenie Polak Węgier dwa bratanki,nie jak się nie odnoszą względem pochodzen...
• 2022-06-16 19:03:58
ekstra
• 2022-06-18 17:12:40
ok
• 2022-06-08 15:52:28
dzięks
• 2022-06-06 19:26:13
Ale proste
• 2022-06-06 14:23:48