Korelacja Spearmana – wzór, przykład, zadania

Współczynnik korelacji rang Spearmana jest przydatny w sytuacjach, w których mamy do czynienia na przykład z dwoma rankingami i chcemy porównać ich zgodność.

Jest on dany wzorem

\(r_s = 1 - \frac{6(d_1^2 + ... + d_n^2)}{n(n^2-1)}\),

przy czym \(d_i\) to różnica w ocenie \(i\)-tego obiektu w jednym i drugim rankingu, natomiast \(n\) - ilość ocenianych obiektów.

Tak jak w przypadku współczynnika korelacji liniowej Pearsona współczynnik korelacji rang Spearmana jest miarą z przedziału \([-1;1]\). Podobna jest również jego interpretacja. 

 

Przykład:

Wyobraźmy sobie, że miejsca uczelni wyższych w dwóch rankingach przedstawiają się następująco:

Liczymy różnice między pozycjami w obu rankingach, oraz podstawiamy do wzoru.

Ostatecznie otrzymamy zatem, że \(r_s \approx 0,77\), co świadczy o dość dużej zgodności obu rankingów.

Polecamy również:

Komentarze (0)
Wynik działania 2 + 3 =
Ostatnio komentowane
Brakowało mi rozwinięcia „przyjaciele momo” w bohaterach, ale tak to super.
anonim • 2025-06-16 20:16:00
spoko dostałem 5
anonim • 2025-06-16 18:47:01
slabe nic prawie nie ma
anonim • 2025-06-12 19:20:21
fajnie streszcnone bardzo pomocne
anonim • 2025-06-11 15:52:32
fajny
anonim • 2025-06-09 17:45:57