Korelacja Pearsona – wzór, zadania

Z wielu pytań na jakie próbuje odpowiedzieć statystyka jest pytanie o zależność między jedną zmienną a drugą. Narzędziem do tego służącym jest współczynnik korelacji liniowej Pearsona.

Jego postać przedstawia poniższy wzór:

\(r_{xy} = \frac{(x_1-\overline x)(y_1-\overline y) + ... + (x_n-\overline x)(y_n-\overline y)} {\sigma_x\sigma_y} \), gdzie \(\overline x\)\(\overline y\) oznaczają średnie arytmetyczne zmiennych \(x\)\(y\), natomiast \(\sigma_x\)\(\sigma_y\) odchylenia standardowe tych zmiennych.

W praktyce obliczenia wykonywane są przez komputer, a zadaniem statystyka jest prawidłowa interpretacja wyniku. Zauważmy przy tym, że współczynnik korelacji liniowej Pearsona jest miarą unormowaną w przedziale \([-1;1]\), tzn. jeśli wynosi on \(1\) oznacza to korelację ujemną (wraz ze wzrostem jednej zmiennej druga maleje i odwrotnie), jeśli zaś wynosi on \(1\) zmienne są ze sobą skorelowane dodatnio (wzrostowi jednej zmiennej towarzyszy wzrost drugiej, itd.). Korelacja równa \(0\) oznacza brak zależności między zmiennymi.

 

Przykład:

Zastanówmy się w jaki sposób ocena z egzaminu powiązana jest z czasem spędzonym na naukę?

Przykładowe dane dotyczą grupy uczniów. Zmienną \(x\) jest czas poświęcony na naukę (w godzinach), natomiast zmienną \(y\) - ocena z egzaminu.

Można policzyć, że korelacja dla tych danych (mierzona współczynnikiem korelacji liniowej Pearsona) jest równa \(r_{xy} \approx 0,48\), a zatem jest to korelacja dodatnia o umiarkowanej sile. Wniosek? Dla tego zestawu danych czas spędzony na nauce tylko w pewnym stopniu przyczyniał się do zwiększenia szans na zdobycie lepszej oceny.

Polecamy również:

Komentarze (0)
Wynik działania 2 + 4 =
Ostatnio komentowane
jhbvgf6jujf
• 2025-01-21 14:25:31
To ja ola
• 2025-01-20 14:10:30
bardzo się przyda na ściągi na kartkówki
• 2025-01-16 13:41:59
Latwe
• 2025-01-15 18:41:38
super
• 2024-12-21 22:05:33