Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Prawo wielkich liczb – definicja, przykład, zadania

Ostatnio komentowane
Santokiem nie Sanokiem jedna litera, kilkaset km różnicy ;)
Tygrys • 2018-11-15 20:05:01
a gdzie som odpowiedzi do tego tekstu ?
Ernest • 2018-11-15 07:27:17
dobrze ale żeby to było bardziej wyraziście lepiej by było.
lolek • 2018-11-15 06:02:14
W przykładzie A jest błąd: Wynik to x^2+4x+19 R=83
b1nd • 2018-11-13 19:33:58
praca nie na temat karolino szwajko
huba buba • 2018-11-13 19:36:50
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Jednym z ważniejszych początkowych wyników teorii prawdopodobieństwa jest tzw. prawo wielkich liczb, sformułowane przez Jakoba Bernoulliego i nazwane przez niego złotym twierdzeniem. Orzeka ono, że „z prawdopodobieństwem dowolnie bliskim 1 można oczekiwać, że przy dostatecznie dużej liczbie prób częstość wystąpienia danego zdarzenia losowego będzie się dowolnie mało różniła od jego prawdopodobieństwa”.

W praktyce twierdzenie to sprowadza się do faktu, że w badaniach statystycznych możemy mieć dokładną świadomość tego, na jaki błąd się narażamy formułując wnioski w oparciu o próbę statystyczną, tj. grupę jednostek wyodrębnioną z całej populacji.

Formalne sformułowanie twierdzenia jest następujące:  \lim_{n \to \infty} P(|w_i - p_i| <\varep)=1, gdzie w_i oraz p_i oznaczają odpowiednio empiryczne częstości i prawdopodobieństwa wystąpienia i-tego zjawiska.

Innymi słowy, w przełożeniu na język statystyki, wartość średniej arytmetycznej z próby jest tym lepszym oszacowaniem średniej całej populacji im liczebność próby losowej jest większa.

Polecamy również:

Komentarze (1)
5 + 5 =
Komentarze
Bernoulli • 2016-12-28 17:58:02
heh