Na stronie używamy cookies. Korzystanie z witryny oznacza zgodę na ich wykorzystywanie. Szczegóły znajdziesz w Regulaminie.
ZAMKNIJ X

Fale stojące

Ostatnio komentowane
Niesamowite hostingserwery.com
Linux • 2019-06-16 16:47:25
przydalo sie
jjoojo • 2019-06-13 14:46:18
Nie tyle rozwód co uznanie małżeństwa za nieważne dr Arletta Bolesta adwokat kości...
Arletta Bolesta • 2019-06-12 13:59:29
Abstrakcjonizm operuje abstrakcją! Zrezygnował, jak sam autor pisze, z wszelkiej figurat...
Anna • 2019-06-11 17:31:16
Autor:
Drukuj
Drukuj
Rozmiar
AAA

Powstawanie fal stojących jest rezultatem szczególnego przypadku interferencji tj. jest wynikiem nakładania się fal o tych samych długościach i amplitudach, lecz poruszających się w przeciwnych kierunkach. Fale stojące powstają w ośrodkach ograniczonych geometrycznie, gdzie mogą się na siebie nakładać fale padająca i odbita  od granicy ośrodka.

Na rysunku przedstawiono dwie fale o tych samych długościach i amplitudach, biegnące w przeciwnych kierunkach. Wynikiem ich interferencji (nałożenia się na siebie) jest fala stojąca.

Aby znaleźć równanie fali stojącej należy posłużyć się zasadą superpozycji, zgodnie z którą wychylenie wypadkowe fali jest sumą wychyleń fal interferujących:

y  = y1 + y2

Równania nakładających się fal mają postać:

y _{1} =Asin\left[2 \pi \left( \frac{t}{T} - \frac{x}{ \lambda } \right)\right]

y _{2} =Asin\left[2 \pi \left( \frac{t}{T} - \frac{x}{ \lambda } \right)\right]

gdzie: A – amplituda fali, t – czas, T – okres drgań, x – położenie, λ – długość fali.

 Wychylenie fali wypadkowej można więc zapisać następująco:

y=Asin\left[2 \pi \left( \frac{t}{T} - \frac{x}{ \lambda } \right)\right]+Asin\left[2 \pi \left( \frac{t}{T} - \frac{x}{ \lambda } \right)\right]
 
Korzystając z zależności sin \alpha +sin \beta =2sin \frac{1}{2} ( \alpha + \beta )cos \frac{1}{2} ( \alpha - \beta ) , otrzymamy równanie:

y =\left[2Asin \left( \frac{2 \pi }{ \lambda } \cdot x \right)\right]cos\left( \frac{2 \pi }{T} \cdot t\right)
 
Ostatnie wyrażenie nie może opisywać fali biegnącej – opisuje ono falę stojącą.
Wielkość 2Asin\left( \frac{2 \pi }{ \lambda }  \cdot x\right)  jest amplitudą elementu fali znajdującego się w odległości x.

Polecamy również:

  • Fala stojąca - węzły i strzałki

    W odróżnieniu do fal biegnących amplituda fali stojącej jest zależna od położenia (x) danego elementu fali (w przypadku fal biegnących amplituda w każdym punkcie była identyczna) i wyraża się wzorem: Więcej »

Komentarze (1)
1 + 1 =
Komentarze
Fizyczka • 2019-04-09 06:48:18
Bardzo ciekawe i pomocne ;)
echo $this->Html->script('core.min'); echo $this->Html->script('blockadblock.js'); echo $this->Html->script('fancybox/jquery.fancybox-1.3.4.min'); echo $this->Html->css('/js/fancybox/jquery.fancybox-1.3.4.min'); echo $this->Html->script('jnice/jquery.jNice', array('async' => 'async')); echo $this->Html->css('/js/jnice/jNice.min');